Suppr超能文献

代谢模型揭示了人体干预试验中共生菌功效的决定因素。

Metabolic modeling reveals determinants of synbiotic efficacy in a human intervention trial.

作者信息

Quinn-Bohmann Nick, Gibbons Sean M

机构信息

Institute for Systems Biology, Seattle, WA 98109, USA.

Bioengineering Department, University of Washington, Seattle, WA 98195, USA.

出版信息

medRxiv. 2025 Jun 25:2025.06.24.25330246. doi: 10.1101/2025.06.24.25330246.

Abstract

Synbiotic interventions show variable effects across individuals, likely driven by ecological interactions with the endogenous microbiota and the host diet. Rationally predicting individual-specific success or failure of probiotic and prebiotic interventions remains an outstanding challenge. In this study, we leverage microbial community-scale metabolic models (MCMMs) to predict probiotic engraftment and shifts in microbiota-mediated short-chain fatty acid (SCFA) production in response to a synbiotic intervention. Using data from a placebo-controlled synbiotic intervention trial, involving a cocktail of five probiotic strains and the prebiotic inulin, we validate model engraftment predictions with quantitative PCR (qPCR), demonstrating that MCMMs accurately predict probiotic engraftment outcomes in the treatment group with over 85% accuracy. Engraftment varied by species, with and displaying higher engraftment rates than and . Furthermore, MCMMs predicted significant increases in butyrate and propionate production following synbiotic treatment. MCMM-predicted changes in propionate production in the treatment group were negatively associated with changes in C-reactive protein (CRP), a blood marker of systemic inflammation, from baseline to 12 weeks after the synbiotic intervention. Finally, we explore MCMM-predicted responses to a wider range of synbiotic combinations in a larger observational cohort, suggesting that personalized prebiotic selection can augment probiotic efficacy. These findings highlight the potential of metabolic modeling to inform precision microbiome therapeutics.

摘要

合生制剂干预在个体间显示出不同的效果,这可能是由与内源性微生物群和宿主饮食的生态相互作用所驱动的。合理预测益生菌和益生元干预的个体特异性成败仍然是一个突出的挑战。在本研究中,我们利用微生物群落规模的代谢模型(MCMMs)来预测合生制剂干预后益生菌的植入以及微生物群介导的短链脂肪酸(SCFA)产生的变化。使用来自一项安慰剂对照的合生制剂干预试验的数据,该试验涉及五种益生菌菌株和益生元菊粉的混合物,我们用定量聚合酶链反应(qPCR)验证了模型的植入预测,证明MCMMs能以超过85%的准确率准确预测治疗组中益生菌的植入结果。植入情况因菌种而异,[具体菌种1]和[具体菌种2]的植入率高于[具体菌种3]和[具体菌种4]。此外,MCMMs预测合生制剂治疗后丁酸盐和丙酸盐的产量会显著增加。治疗组中MCMMs预测的丙酸盐产量变化与合生制剂干预后从基线到12周的全身性炎症血液标志物C反应蛋白(CRP)的变化呈负相关。最后,我们在一个更大的观察性队列中探索了MCMMs对更广泛的合生制剂组合的预测反应,表明个性化的益生元选择可以增强益生菌的疗效。这些发现突出了代谢建模在指导精准微生物组治疗方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3579/12262785/715f1c9e2f7c/nihpp-2025.06.24.25330246v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验