Elzanaty Zeinab A, Shafaa Medhat W, Elabed Seifeldin, Omran Mohamed M
Biochemistry Division, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt.
Medical Biophysics Division, Physics Department, Faculty of Science, Helwan University, Cairo, Egypt.
Sci Rep. 2025 Aug 7;15(1):28897. doi: 10.1038/s41598-025-13280-0.
This study presents a comprehensive experimental and computational evaluation of PEGylated liposomal metformin as a nanocarrier-based therapeutic strategy for hepatocellular carcinoma (HCC). Liposomal formulations were prepared via thin-film hydration, yielding spherical, well-dispersed vesicles with high encapsulation efficiency (> 90%) and a mean hydrodynamic diameter of 177.2 ± 30.2 nm. PEGylation and metformin loading induced significant physicochemical alterations, as confirmed by differential scanning calorimetry and FTIR spectroscopy, reflecting increased bilayer fluidity and headgroup interactions. Cytotoxicity assays revealed a substantial enhancement in antitumor potency: PEGylated liposomal metformin reduced the IC₅₀ against HepG2 cells to 118.76 μg/mL compared to 2392.81 μg/mL for free metformin-representing a > 20-fold improvement. In Vero cells, IC₅₀ values were 137.13 μg/mL and 2113.86 μg/mL, respectively, yielding a selectivity index of 1.15. Apoptosis analysis demonstrated increased early and late apoptotic populations, with PEGylated formulations inducing total apoptosis rates of 20.67% in HepG2 cells. Cell cycle profiling revealed marked G₀/G₁ arrest, with 78.12% accumulation versus 58.21% in untreated controls. DNA fragmentation analysis via comet assay further supported elevated genotoxic effects in cancer cells. Molecular docking and 100 ns molecular dynamics simulations confirmed stable binding of metformin to mitochondrial Complex I and CDK4/cyclin D3, with a total MM-PBSA binding energy of - 27.33 kcal/mol in the CDK4 complex. These findings demonstrate that PEGylated liposomal encapsulation substantially enhances the cytotoxic profile of metformin, supporting its advancement as a targeted nanotherapeutic candidate for HCC.
本研究对聚乙二醇化脂质体二甲双胍作为一种基于纳米载体的肝细胞癌(HCC)治疗策略进行了全面的实验和计算评估。脂质体制剂通过薄膜水化法制备,得到球形、分散良好的囊泡,包封率高(>90%),平均流体动力学直径为177.2±30.2nm。差示扫描量热法和傅里叶变换红外光谱证实,聚乙二醇化和二甲双胍负载引起了显著的物理化学变化,反映出双层流动性和头基相互作用增加。细胞毒性试验显示抗肿瘤效力显著增强:聚乙二醇化脂质体二甲双胍将对HepG2细胞的IC₅₀降低至118.76μg/mL,而游离二甲双胍为2392.81μg/mL,提高了20倍以上。在Vero细胞中,IC₅₀值分别为137.13μg/mL和2113.86μg/mL,选择性指数为1.15。凋亡分析显示早期和晚期凋亡细胞群增加,聚乙二醇化制剂在HepG2细胞中诱导的总凋亡率为20.67%。细胞周期分析显示明显的G₀/G₁期阻滞,累积率为78.12%,而未处理对照为58.21%。通过彗星试验进行的DNA片段分析进一步支持了癌细胞中遗传毒性作用的增强。分子对接和100ns分子动力学模拟证实二甲双胍与线粒体复合物I和CDK4/细胞周期蛋白D3稳定结合,在CDK4复合物中的总MM-PBSA结合能为-27.33kcal/mol。这些发现表明,聚乙二醇化脂质体包封显著增强了二甲双胍的细胞毒性,支持其作为HCC的靶向纳米治疗候选药物的进展。