Nishisaka Caroline Sayuri, Quevedo Hélio Danilo, Ventura João Paulo, Andreote Fernando Dini, Mauchline Tim H, Mendes Rodrigo
Embrapa Environment, Jaguariúna, SP, Brazil.
College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil.
Geoderma. 2025 Aug;460:117444. doi: 10.1016/j.geoderma.2025.117444.
Soil microbial diversity plays a crucial role in plant health, influencing pathogen suppression and biocontrol efficacy. This study investigated how soil microbial diversity modulates interactions between the pathogen and the biocontrol bacterium in the wheat rhizosphere. Using a dilution-to-extinction method, we established five soil microbial diversity levels: natural soil, dilutions at 10, 10, 10, and fully autoclaved soil. This gradient allowed us to evaluate disease severity, plant growth, and rhizosphere microbiome shifts. Inoculation with significantly reduced disease severity caused by , particularly in low-diversity soils, emphasizing the effectiveness of in these simplified environments where microbial competition is reduced. Despite higher pathogen abundance in low-diversity soils, effectively mitigated disease severity, likely through direct antagonistic activity. Alpha diversity indices confirmed a reduction in microbial diversity across the gradient, while beta diversity analyses revealed distinct shifts among treatments. Although , and were significantly enriched in natural soils with inoculation of the , statistically significant disease suppression was not observed under these higher-diversity conditions. On the other hand, in low-diverse soils (autoclaved soil), where disease is suppressed with inoculation, showed a significant enrichment when compared with the treatment inoculated only with the pathogen, suggesting that this bacterial taxon can play a role in disease suppression along with the inoculant. These findings underscore the critical role of the soil microbial diversity in shaping the success of biocontrol interventions.
土壤微生物多样性在植物健康中起着关键作用,影响着病原菌抑制和生物防治效果。本研究调查了土壤微生物多样性如何调节小麦根际病原菌与生物防治细菌之间的相互作用。我们采用稀释至灭绝法建立了五个土壤微生物多样性水平:天然土壤、10⁻¹、10⁻²、10⁻³稀释度土壤以及完全高压灭菌土壤。这个梯度使我们能够评估病害严重程度、植物生长以及根际微生物群落的变化。接种[生物防治细菌名称]显著降低了由[病原菌名称]引起的病害严重程度,尤其是在低多样性土壤中,这凸显了[生物防治细菌名称]在这些微生物竞争减少的简化环境中的有效性。尽管低多样性土壤中病原菌丰度较高,但[生物防治细菌名称]可能通过直接拮抗活性有效地减轻了病害严重程度。α多样性指数证实了整个梯度上微生物多样性的降低,而β多样性分析揭示了不同处理之间的明显变化。虽然在接种[生物防治细菌名称]的天然土壤中[特定细菌分类群名称1]、[特定细菌分类群名称2]和[特定细菌分类群名称3]显著富集,但在这些较高多样性条件下未观察到统计学上显著的病害抑制。另一方面,在低多样性土壤(高压灭菌土壤)中,接种[生物防治细菌名称]可抑制病害,与仅接种病原菌的处理相比,[特定细菌分类群名称4]显示出显著富集,这表明该细菌分类群可与接种剂一起在病害抑制中发挥作用。这些发现强调了土壤微生物多样性在塑造生物防治干预成功方面的关键作用。
BMC Microbiol. 2024-12-30
Cochrane Database Syst Rev. 2021-4-19
Cochrane Database Syst Rev. 2020-1-9
Cochrane Database Syst Rev. 2017-12-22
Front Plant Sci. 2025-6-26
Antibiotics (Basel). 2024-6-27
Microbiome. 2024-7-15
Microbiol Resour Announc. 2024-7-18
Environ Microbiome. 2024-5-14
Science. 2023-12-15
Front Microbiol. 2023-6-23