使用注意力增强的YOLOv8框架自动检测超广角眼底图像中的糖尿病视网膜病变病变。

Automated detection of diabetic retinopathy lesions in ultra-widefield fundus images using an attention-augmented YOLOv8 framework.

作者信息

Hu Lei-Si, Wang Jie, Zhang Heng-Ming, Huang Hai-Yu

机构信息

First Clinical College, Chongqing Medical University, Chongqing, China.

Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.

出版信息

Front Cell Dev Biol. 2025 Jul 24;13:1608580. doi: 10.3389/fcell.2025.1608580. eCollection 2025.

Abstract

OBJECTIVE

To enhance the automatic detection precision of diabetic retinopathy (DR) lesions, this study introduces an improved YOLOv8 model specifically designed for the precise identification of DR lesions.

METHOD

This study integrated two attention mechanisms, convolutional exponential moving average (convEMA) and convolutional simple attention module (convSimAM), into the backbone of the YOLOv8 model. A dataset consisting of 3,388 ultra-widefield (UWF) fundus images obtained from patients with DR, each with a resolution of 2,600 × 2048 pixels, was utilized for both training and testing purposes. The performances of the three models-YOLOv8, YOLOv8+ convEMA, and YOLOv8+ convSimAM-were systematically compared.

RESULTS

A comparative analysis of the three models revealed that the original YOLOv8 model suffers from missed detection issues, achieving a precision of 0.815 for hemorrhage spot detection. YOLOv8+ convEMA improved hemorrhage detection precision to 0.906, while YOLOv8+ convSimAM achieved the highest value of 0.910, demonstrating the enhanced sensitivity of spatial attention. The proposed model also maintained comparable precision in detecting hard exudates while improving recall to 0.804. It demonstrated the best performance in detecting cotton wool spots and the epiretinal membrane. Overall, the proposed method provides a fine-tuned model specialized in subtle lesion detection, providing an improved solution for DR lesion assessment.

CONCLUSION

In this study, we proposed two attention-augmented YOLOv8 models-YOLOv8+ convEMA and YOLOv8+ convSimAM-for the automated detection of DR lesions in UWF fundus images. Both models outperformed the baseline YOLOv8 in terms of detection precision, average precision, and recall. Among them, YOLOv8+ convSimAM achieved the most balanced and accurate results across multiple lesion types, demonstrating an enhanced capability to detect small, low-contrast, and structurally complex features. These findings support the effectiveness of lightweight attention mechanisms in optimizing deep learning models for high-precision DR lesion detection.

摘要

目的

为提高糖尿病视网膜病变(DR)病变的自动检测精度,本研究引入了一种专门为精确识别DR病变而设计的改进型YOLOv8模型。

方法

本研究将两种注意力机制,即卷积指数移动平均(convEMA)和卷积简单注意力模块(convSimAM),集成到YOLOv8模型的主干中。使用从DR患者获得的3388张超广角(UWF)眼底图像组成的数据集进行训练和测试,每张图像的分辨率为2600×2048像素。系统比较了三种模型——YOLOv8、YOLOv8+convEMA和YOLOv8+convSimAM的性能。

结果

对三种模型的对比分析表明,原始的YOLOv8模型存在漏检问题,出血斑检测精度为0.815。YOLOv8+convEMA将出血检测精度提高到0.906,而YOLOv8+convSimAM达到最高值0.910,表明空间注意力的敏感性增强。所提出的模型在检测硬性渗出物时也保持了相当的精度,同时将召回率提高到0.804。它在检测棉絮斑和视网膜前膜方面表现出最佳性能。总体而言,所提出的方法提供了一个专门用于细微病变检测的微调模型,为DR病变评估提供了改进的解决方案。

结论

在本研究中,我们提出了两种注意力增强的YOLOv8模型——YOLOv8+convEMA和YOLOv8+convSimAM——用于自动检测UWF眼底图像中的DR病变。这两种模型在检测精度、平均精度和召回率方面均优于基线YOLOv8。其中,YOLOv8+convSimAM在多种病变类型中取得了最平衡、准确的结果,表明其具有更强的能力来检测小的、低对比度和结构复杂的特征。这些发现支持了轻量级注意力机制在优化深度学习模型以实现高精度DR病变检测方面的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a2f/12328430/7bbf70d50785/fcell-13-1608580-g001.jpg

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索