Zhao Shuai-Shuai, Yuan Chuan, Liu Jin-Long, Wu Qi-Cai, Zhou Xue-Liang
Department of Cardiovascular Surgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
Cell Mol Life Sci. 2025 Aug 8;82(1):302. doi: 10.1007/s00018-025-05809-3.
Pulmonary arterial hypertension (PAH) is characterized by pathological vascular remodeling driven by pulmonary artery smooth muscle cell (PASMC) proliferation. While METTL14-mediated N6-methyladenosine (mA) RNA modification has been implicated in PAH, the upstream regulators and downstream effectors linking mA to PASMC dysregulation remain unclear. This study investigates the role of SETD2, a histone methyltransferase, in driving METTL14-dependent mA modifications to promote PAH via Piezo1 and transglutaminase 2 (TGM2).
C57BL/6 mice were subjected to hypoxia, and pulmonary artery smooth muscle cells (PASMCs) were periodically stretched to establish PAH models in vivo and in vitro. The epigenetic regulation of METTL14 by SETD2-mediated H3K36me3 was investigated by chromatin immunoprecipitation (ChIP). Methylated RNA immunoprecipitation sequence (MeRIP-seq), RNA-seq, and dual-luciferase reporter gene data were used to determine whether METTL14 enhances the expression of Piezo1 in an mA-dependent manner. To analyze comparisons between multiple datasets, one-way ANOVA was used.
METTL14 overexpression increased PASMC proliferation by 1.45-fold (vs. controls) and elevated global mA levels by 1.73-fold in total RNA and 1.43-fold in poly A + RNA. SETD2-driven H3K36me3 histone modification upregulated METTL14 expression by 1.76-fold, amplifying mA deposition. In hypoxia-induced PAH mice, METTL14 overexpression exacerbated hemodynamic severity, increasing right ventricular systolic pressure (RVSP) by 29% and mean pulmonary arterial pressure (mPAP) by 33% (vs. hypoxia alone). SETD2 knockout in PASMCs reduced RVSP by 24%, mPAP by 28%, and pulmonary artery media thickness (PAMT) by 29%, while decreasing mA levels by 48%. Piezo1 mRNA stability increased by 2.36-fold via METTL14-mediated mA modification at adenosine 1080, elevating Piezo1 protein expression by 3.58-fold in PASMCs. Piezo1 overexpression increased intracellular Ca²⁺ influx, driving TGM2 activity by 1.79-fold and restoring PASMC proliferation despite SETD2 deficiency.
This study identifies a novel SETD2/H3K36me3/METTL14/mA axis that stabilizes Piezo1 mRNA, promoting Ca²⁺-dependent TGM2 activation and PASMC proliferation in PAH. Targeting this pathway-via SETD2, METTL14, or Piezo1 inhibition-may offer therapeutic potential to ameliorate vascular remodeling in PAH.
肺动脉高压(PAH)的特征是由肺动脉平滑肌细胞(PASMC)增殖驱动的病理性血管重塑。虽然METTL14介导的N6-甲基腺苷(m⁶A)RNA修饰与PAH有关,但将m⁶A与PASMC失调联系起来的上游调节因子和下游效应器仍不清楚。本研究调查组蛋白甲基转移酶SETD2在驱动METTL14依赖性m⁶A修饰以通过Piezo1和转谷氨酰胺酶2(TGM2)促进PAH中的作用。
将C57BL/6小鼠置于低氧环境中,并对肺动脉平滑肌细胞(PASMCs)进行周期性拉伸,以在体内和体外建立PAH模型。通过染色质免疫沉淀(ChIP)研究SETD2介导的H3K36me3对METTL14的表观遗传调控。使用甲基化RNA免疫沉淀测序(MeRIP-seq)、RNA测序和双荧光素酶报告基因数据来确定METTL14是否以m⁶A依赖性方式增强Piezo1的表达。为了分析多个数据集之间的比较,使用单因素方差分析。
METTL14过表达使PASMC增殖增加1.45倍(相对于对照组),总RNA中的整体m⁶A水平升高1.73倍,多聚腺苷酸加尾RNA中的整体m⁶A水平升高1.43倍。SETD2驱动的H3K36me3组蛋白修饰使METTL14表达上调1.76倍,放大了m⁶A沉积。在低氧诱导的PAH小鼠中,METTL14过表达加剧了血流动力学严重程度,右心室收缩压(RVSP)增加29%,平均肺动脉压(mPAP)增加33%(相对于单独低氧组)。PASMC中SETD2基因敲除使RVSP降低24%,mPAP降低28%,肺动脉中层厚度(PAMT)降低29%,同时m⁶A水平降低48%。通过METTL14介导的腺苷1080位点的m⁶A修饰,Piezo1 mRNA稳定性增加2.36倍,使PASMC中Piezo1蛋白表达升高3.58倍。Piezo1过表达增加细胞内Ca²⁺内流,使TGM2活性增加1.79倍,尽管存在SETD2缺陷,但仍能恢复PASMC增殖。
本研究确定了一种新的SETD2/H3K36me3/METTL14/m⁶A轴,该轴稳定Piezo1 mRNA,促进PAH中Ca²⁺依赖性TGM2激活和PASMC增殖。通过抑制SETD2、METTL14或Piezo1靶向该途径可能为改善PAH中的血管重塑提供治疗潜力。