Suppr超能文献

平滑肌细胞 BMPR2-ARRB2 轴失调导致肺动脉高压。

Dysregulated Smooth Muscle Cell BMPR2-ARRB2 Axis Causes Pulmonary Hypertension.

机构信息

BASE Initiative, Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital (L.W., J.R.M., A.C., S.I., M.R.), Stanford University School of Medicine, CA.

Vera Moulton Wall Center for Pulmonary Vascular Diseases (L.W., J.R.M., A.C., S.I., C.G.L., N.F.T., S.T., P.-I.C., M.G., D.L., R.L.H., N.E.-B., Y.M.K., M.R.), Stanford University School of Medicine, CA.

出版信息

Circ Res. 2023 Mar 3;132(5):545-564. doi: 10.1161/CIRCRESAHA.121.320541. Epub 2023 Feb 6.

Abstract

OBJECTIVE

Mutations in (bone morphogenetic protein receptor 2) are associated with familial and sporadic pulmonary arterial hypertension (PAH). The functional and molecular link between loss of BMPR2 in pulmonary artery smooth muscle cells (PASMC) and PAH pathogenesis warrants further investigation, as most investigations focus on BMPR2 in pulmonary artery endothelial cells. Our goal was to determine whether and how decreased BMPR2 is related to the abnormal phenotype of PASMC in PAH.

METHODS

SMC-specific mice () were created and compared to controls in room air, after 3 weeks of hypoxia as a second hit, and following 4 weeks of normoxic recovery. Echocardiography, right ventricular systolic pressure, and right ventricular hypertrophy were assessed as indices of pulmonary hypertension. Proliferation, contractility, gene and protein expression of PASMC from mice, human PASMC with reduced by small interference RNA, and PASMC from PAH patients with a mutation were compared to controls, to investigate the phenotype and underlying mechanism.

RESULTS

mice showed reduced hypoxia-induced vasoconstriction and persistent pulmonary hypertension following recovery from hypoxia, associated with sustained muscularization of distal pulmonary arteries. PASMC from mutant compared to control mice displayed reduced contractility at baseline and in response to angiotensin II, increased proliferation and apoptosis resistance. Human PASMC with reduced BMPR2 by small interference RNA, and PASMC from PAH patients with a mutation showed a similar phenotype related to upregulation of pERK1/2 (phosphorylated extracellular signal related kinase 1/2)-pP38-pSMAD2/3 mediating elevation in ARRB2 (β-arrestin2), pAKT (phosphorylated protein kinase B) inactivation of GSK3-beta, CTNNB1 (β-catenin) nuclear translocation and reduction in RHOA (Ras homolog family member A) and RAC1 (Ras-related C3 botulinum toxin substrate 1). Decreasing ARRB2 in PASMC with reduced BMPR2 restored normal signaling, reversed impaired contractility and attenuated heightened proliferation and in mice with inducible loss of BMPR2 in SMC, decreasing ARRB2 prevented persistent pulmonary hypertension.

CONCLUSIONS

Agents that neutralize the elevated ARRB2 resulting from loss of BMPR2 in PASMC could prevent or reverse the aberrant hypocontractile and hyperproliferative phenotype of these cells in PAH.

摘要

目的

(骨形态发生蛋白受体 2)中的突变与家族性和散发性肺动脉高压(PAH)有关。肺动脉平滑肌细胞(PASMC)中 BMPR2 缺失与 PAH 发病机制之间的功能和分子联系值得进一步研究,因为大多数研究都集中在肺动脉内皮细胞中的 BMPR2 上。我们的目标是确定 BMPR2 的减少是否以及如何与 PAH 中 PASMC 的异常表型相关。

方法

构建了平滑肌特异性 (SM22α-CreERT2) 小鼠( ),并在常氧条件下、缺氧 3 周作为第二次打击后以及随后的常氧恢复 4 周后与对照组进行比较。超声心动图、右心室收缩压和右心室肥厚被评估为肺动脉高压的指标。比较 小鼠、用小干扰 RNA 减少的人 PASMC、以及具有 突变的 PAH 患者的 PASMC 的增殖、收缩性、基因和蛋白表达,以研究表型和潜在机制。

结果

与对照组相比, 小鼠表现出缺氧诱导的血管收缩减少和缺氧恢复后持续的肺动脉高压,与远端肺动脉的持续肌化有关。与对照组相比,突变型 PASMC 的基础收缩性和对血管紧张素 II 的反应性降低,增殖增加,凋亡抵抗。用小干扰 RNA 减少的人 PASMC 以及具有 突变的 PAH 患者的 PASMC 表现出与上调 pERK1/2(磷酸化细胞外信号调节激酶 1/2)-pP38-pSMAD2/3 介导的 ARRB2(β-arrestin2)升高相关的类似表型,从而抑制 GSK3-β 的 pAKT(磷酸化蛋白激酶 B)失活、CTNNB1(β-连环蛋白)核易位和 RHOA(Ras 同源家族成员 A)和 RAC1(Ras 相关 C3 肉毒杆菌毒素底物 1)减少。在 BMPR2 减少的 PASMC 中减少 ARRB2 恢复了正常信号转导,逆转了受损的收缩性,并减弱了这些细胞的过度增殖,并且在 SMC 中诱导性丧失 BMPR2 的小鼠中,减少 ARRB2 可防止持续性肺动脉高压。

结论

中和 PASMC 中 BMPR2 缺失引起的升高的 ARRB2 的药物可能预防或逆转这些细胞在 PAH 中的异常低收缩性和高增殖表型。

相似文献

1
Dysregulated Smooth Muscle Cell BMPR2-ARRB2 Axis Causes Pulmonary Hypertension.
Circ Res. 2023 Mar 3;132(5):545-564. doi: 10.1161/CIRCRESAHA.121.320541. Epub 2023 Feb 6.
5
Single-Cell Imaging Maps Inflammatory Cell Subsets to Pulmonary Arterial Hypertension Vasculopathy.
Am J Respir Crit Care Med. 2024 Jan 15;209(2):206-218. doi: 10.1164/rccm.202209-1761OC.
7
RhoA increases ASIC1a plasma membrane localization and calcium influx in pulmonary arterial smooth muscle cells following chronic hypoxia.
Am J Physiol Cell Physiol. 2018 Feb 1;314(2):C166-C176. doi: 10.1152/ajpcell.00159.2017. Epub 2017 Oct 25.
8
Paracrine Action of Bone Morphogenetic Protein 3 in Pulmonary Arterial Hypertension.
bioRxiv. 2025 Jun 18:2025.06.13.659638. doi: 10.1101/2025.06.13.659638.
10
SMAD5 as a novel gene for familial pulmonary arterial hypertension.
Clin Sci (Lond). 2025 Jan 15;139(1):15-27. doi: 10.1042/CS20241340.

引用本文的文献

1
Enhancer-targeting CRISPR screens at coronary artery disease loci suggest shared mechanisms of disease risk.
medRxiv. 2025 Sep 2:2025.08.28.25334684. doi: 10.1101/2025.08.28.25334684.
2
In vitro and in vivo characterization of wild type BMP9 and a non-osteogenic variant in models of pulmonary arterial hypertension.
PLoS One. 2025 Jul 28;20(7):e0329089. doi: 10.1371/journal.pone.0329089. eCollection 2025.
5
Association of interferon regulator factor 1 upregulation with pulmonary arterial hypertension.
J Thorac Dis. 2025 Mar 31;17(3):1698-1710. doi: 10.21037/jtd-2025-390. Epub 2025 Mar 23.
7
Pulmonary Hypertension: Molecular Mechanisms and Clinical Studies.
MedComm (2020). 2025 Mar 10;6(3):e70134. doi: 10.1002/mco2.70134. eCollection 2025 Mar.
8
Sotatercept and pulmonary arterial hypertension.
Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2024;49(9):1503-1508. doi: 10.11817/j.issn.1672-7347.2024.240093.
9
High Shear Stress Reduces ERG Causing Endothelial-Mesenchymal Transition and Pulmonary Arterial Hypertension.
Arterioscler Thromb Vasc Biol. 2025 Feb;45(2):218-237. doi: 10.1161/ATVBAHA.124.321092. Epub 2024 Dec 26.
10
Carotid Baroreceptor Stimulation Ameliorates Pulmonary Arterial Remodeling in Rats With Hypoxia-Induced Pulmonary Hypertension.
J Am Heart Assoc. 2024 Oct;13(19):e035868. doi: 10.1161/JAHA.124.035868. Epub 2024 Sep 30.

本文引用的文献

1
ALDH1A3 Coordinates Metabolism With Gene Regulation in Pulmonary Arterial Hypertension.
Circulation. 2021 May 25;143(21):2074-2090. doi: 10.1161/CIRCULATIONAHA.120.048845. Epub 2021 Mar 25.
2
PPARγ-p53-Mediated Vasculoregenerative Program to Reverse Pulmonary Hypertension.
Circ Res. 2021 Feb 5;128(3):401-418. doi: 10.1161/CIRCRESAHA.119.316339. Epub 2020 Dec 16.
3
PPARγ Interaction with UBR5/ATMIN Promotes DNA Repair to Maintain Endothelial Homeostasis.
Cell Rep. 2019 Jan 29;26(5):1333-1343.e7. doi: 10.1016/j.celrep.2019.01.013.
4
Vascular Endothelial Growth Factor Receptor 3 Regulates Endothelial Function Through β-Arrestin 1.
Circulation. 2019 Mar 26;139(13):1629-1642. doi: 10.1161/CIRCULATIONAHA.118.034961.
6
A cautionary note for researchers treating mice with the neurotransmitter norepinephrine.
Biochem Biophys Rep. 2018 Aug 17;15:103-106. doi: 10.1016/j.bbrep.2018.08.003. eCollection 2018 Sep.
7
Non-visual arrestins regulate the focal adhesion formation via small GTPases RhoA and Rac1 independently of GPCRs.
Cell Signal. 2018 Jan;42:259-269. doi: 10.1016/j.cellsig.2017.11.003. Epub 2017 Nov 11.
8
Inhibition of Smooth Muscle β-Catenin Hinders Neointima Formation After Vascular Injury.
Arterioscler Thromb Vasc Biol. 2017 May;37(5):879-888. doi: 10.1161/ATVBAHA.116.308643. Epub 2017 Mar 16.
10
In Pulmonary Arterial Hypertension, Reduced BMPR2 Promotes Endothelial-to-Mesenchymal Transition via HMGA1 and Its Target Slug.
Circulation. 2016 May 3;133(18):1783-94. doi: 10.1161/CIRCULATIONAHA.115.020617. Epub 2016 Apr 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验