Wakeel Mujeeb A, Corbin Elizabeth A, McShan Andrew C, Agarwal Vinayak
School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
ACS Chem Biol. 2025 Sep 19;20(9):2069-2074. doi: 10.1021/acschembio.5c00411. Epub 2025 Aug 8.
Enzymatic post-translational modification of small precursor peptides generates a wide diversity of bioactive peptidic natural products. The interaction between the precursor peptide and the peptide modifying enzyme relies on recognition of the N-terminal region of the precursor peptide─termed the leader peptide─by the modifying enzyme. In this study, we describe a model for the recognition of atypically long and highly structured nitrile hydratase-like leader peptides (NHLPs) by an azoline forming YcaO cyclodehydratase. Predicated upon the unique structure of NHLPs, the binding model relies on protein/protein interactions between higher-order secondary and tertiary structures of the NHLP and the modifying enzyme. In light of previous findings, we report that different modifying enzymes bind to different molecular surfaces of the NHLPs. These findings illustrate the modularity of different NHLP structural features and how fine-tuning of intermolecular interactions is necessary for efficient catalysis.
小前体肽的酶促翻译后修饰产生了多种多样具有生物活性的肽类天然产物。前体肽与肽修饰酶之间的相互作用依赖于修饰酶对前体肽N端区域(称为前导肽)的识别。在本研究中,我们描述了一种唑啉形成YcaO环脱水酶识别非典型长且高度结构化的腈水合酶样前导肽(NHLP)的模型。基于NHLP的独特结构,该结合模型依赖于NHLP高阶二级和三级结构与修饰酶之间的蛋白质/蛋白质相互作用。根据先前的研究结果,我们报告不同的修饰酶与NHLP的不同分子表面结合。这些发现说明了不同NHLP结构特征的模块化,以及分子间相互作用的微调对于有效催化的必要性。