Huang Xiaonan, Tang Peng, Wei Shuheng, Wang Like, Liu Xia, Xi Yongkang, Yin Shouwei, Li Xiaoxi, Yang Xiaoquan
Research and Development Center of Food Proteins, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China.
Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States.
ACS Appl Mater Interfaces. 2025 Aug 20;17(33):46744-46758. doi: 10.1021/acsami.5c11186. Epub 2025 Aug 8.
Bacterial infections, especially those caused by drug-resistant strains, pose severe threats due to their recalcitrance to eradication, leading to persistent inflammation, delayed healing, and elevated therapeutic burdens. Developing scalable, biocompatible platforms capable of achieving rapid sterilization and long-term antibacterial efficacy with precise control remains a critical challenge. Here, we present a bioengineered nanocomposite (AgNPs@ZP) by integrating zein nanoparticles as bio-nanotemplates for spatially controlled polydopamine (PDA) deposition, followed by synthesis of ultrasmall silver nanoparticles (AgNPs) through a domain-confined ligand-rich surface microenvironment. This hierarchical architecture synergized photothermal and sustained antibacterial functionalities, achieving an ultralow minimum bactericidal concentration (MBC) of 0.0625 μg/mL against methicillin-resistant (MRSA) below the WHO permissible limit for silver in drinking water (0.1 μg/mL). The ordered PDA framework and densely anchored AgNPs enhanced the photothermal conversion efficiency (PCE) to 49.79% via localized surface plasmon resonance (LSPR)-induced electric field amplification and collective heating effects. Under near-infrared (NIR) irradiation, AgNPs@ZP exhibited complete eradication of high bacterial loads simulating clinically severe infections (approximately 8log CFU/mL reductions) within 20 min. , AgNPs@ZP-embedded carbomer gel combined with NIR therapy accelerated the healing of MRSA-infected wounds, accompanied by outstanding bacterial elimination, suppressed inflammation, enhanced tissue regeneration, and robust biosafety. This dual-modal nanoplatform leveraged the structural advantages of natural protein-based nanoparticles to enable precise integration of photothermal and AgNP-mediated antibacterial functionalities, offering a biocompatible and eco-friendly strategy against refractory drug-resistant infections.
细菌感染,尤其是由耐药菌株引起的感染,因其难以根除而构成严重威胁,会导致持续炎症、愈合延迟和治疗负担加重。开发能够实现快速杀菌和长期抗菌效果且能精确控制的可扩展、生物相容性平台仍然是一项关键挑战。在此,我们通过整合玉米醇溶蛋白纳米颗粒作为生物纳米模板用于空间控制聚多巴胺(PDA)沉积,随后通过富含配体的受限表面微环境合成超小银纳米颗粒(AgNPs),构建了一种生物工程纳米复合材料(AgNPs@ZP)。这种分级结构协同了光热和持续抗菌功能,对耐甲氧西林金黄色葡萄球菌(MRSA)实现了0.0625 μg/mL的超低最低杀菌浓度(MBC),低于世界卫生组织规定的饮用水中银的允许限量(0.1 μg/mL)。有序的PDA框架和密集锚定的AgNPs通过局部表面等离子体共振(LSPR)诱导的电场放大和集体加热效应将光热转换效率(PCE)提高到了49.79%。在近红外(NIR)照射下,AgNPs@ZP在20分钟内实现了对模拟临床严重感染的高细菌载量的完全清除(约8log CFU/mL的减少)。此外,嵌入AgNPs@ZP的卡波姆凝胶与近红外疗法相结合加速了MRSA感染伤口的愈合,同时伴有出色的细菌清除、炎症抑制、组织再生增强和强大的生物安全性。这种双模态纳米平台利用了基于天然蛋白质的纳米颗粒的结构优势,实现了光热和AgNP介导的抗菌功能的精确整合,为对抗难治性耐药感染提供了一种生物相容性和生态友好的策略。