Alindekon Serge, Rodenburg T Bas, Langbein Jan, Puppe Birger, Wilmsmeier Olaf, Wille Sebastian, Louton Helen
Animal Health and Animal Welfare, Faculty of Agricultural and Environmental Sciences, University of Rostock, Justus-von-Liebig-Weg 6b, 18059 Rostock, Germany.
Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, the Netherlands.
Poult Sci. 2025 Jul 31;104(10):105627. doi: 10.1016/j.psj.2025.105627.
Understanding how laying hens interact with functional resources-such as drinkers, feeders, perches, nest boxes, and wintergardens-is essential for meeting their physiological needs and enabling species-specific behaviors. This knowledge is crucial for poultry welfare assessments and precision livestock management. However, traditional ethological data collection methods, including direct observation and manual video analysis, are labor-intensive, prone to observer bias, and impractical for individual-level tracking. To overcome these challenges, we developed and validated an RFID-based system for automated, non-invasive tracking of individual hens' visits to key resources, using an established ArUco-based video annotation system as the reference standard. For validation, twenty-one laying hens were fitted with RFID leg bands and 3D-ArUco markers and monitored over five days in a mobile barn setup equipped with ultra-high-frequency RFID antennas. Alignment between data from the RFID and 3D-ArUco systems allowed calculation of performance metrics such as the F1-score-defined as the harmonic mean of precision and sensitivity-for visit durations and event detections (i.e., entries and exits), and the coefficient of determination (r²) for visit counts. Wintergarden showed the highest performance (84 % F1-score, 93 % r²). Metal perch achieved F1-scores of 79 % and 86 % for access and leaving events. Nest boxes showed intermediate performance (78 % F1-score, 77 % r²), while drinkers and feeders were lower (64 % F1-score each; r² values of 69 % and 49 %). These findings confirm RFID's potential for tracking visits to wintergardens, perches, and nest boxes-demonstrating sufficient performance for practical use, though further optimization through antenna positioning remains possible. For feeders and drinkers, however, accurate tracking remains challenging, and complementary technologies may be required, as rapid movements reduce tag dwell time, overcrowding causes signal interference, and open areas increase misreads from nearby surrounding movement. This study highlights RFID's value for behavioral research at the individual level in poultry and supports research-driven innovation in housing equipment design. It also demonstrates how a computer-assisted approach can facilitate validation across diverse behavioral contexts.
了解蛋鸡如何与饮水器、喂食器、栖木、产蛋箱和温室等功能资源相互作用,对于满足它们的生理需求和实现特定物种行为至关重要。这些知识对于家禽福利评估和精准畜牧管理至关重要。然而,传统的行为学数据收集方法,包括直接观察和人工视频分析,劳动强度大,容易受到观察者偏差的影响,并且对于个体层面的跟踪不切实际。为了克服这些挑战,我们开发并验证了一种基于射频识别(RFID)的系统,用于自动、非侵入性地跟踪个体母鸡对关键资源的访问,使用已建立的基于阿ruco码的视频注释系统作为参考标准。为了进行验证,给21只蛋鸡佩戴了RFID脚环和3D阿ruco标记,并在配备超高频RFID天线的移动鸡舍设置中进行了为期五天的监测。RFID系统和3D阿ruco系统的数据对齐使得能够计算性能指标,如F1分数(定义为精度和灵敏度的调和平均值)用于访问持续时间和事件检测(即进入和离开),以及访问计数的决定系数(r²)。温室表现出最高的性能(F1分数为84%,r²为93%)。金属栖木在进入和离开事件中的F1分数分别为79%和86%。产蛋箱表现出中等性能(F1分数为78%,r²为77%),而饮水器和喂食器的性能较低(F1分数均为64%;r²值分别为69%和49%)。这些发现证实了RFID在跟踪对温室、栖木和产蛋箱的访问方面的潜力——表明其性能足以用于实际应用,尽管通过天线定位进一步优化仍然可行。然而,对于喂食器和饮水器,准确跟踪仍然具有挑战性,可能需要补充技术,因为快速移动会减少标签停留时间,过度拥挤会导致信号干扰,开放区域会增加来自周围附近移动的误读。这项研究突出了RFID在禽类个体层面行为研究中的价值,并支持住房设备设计中的研究驱动创新。它还展示了计算机辅助方法如何促进跨不同行为背景的验证。