Lonza Martina, Vinnacombe-Willson Gail A, Bevilacqua Francisco, Scarabelli Leonardo, Liz-Marzán Luis M
CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Gipuzkoa, Spain.
NanoOddLAB, Department of Chemistry and Process & Resource Engineering, ETSIIT, University of Cantabria, 39005 Santander, Spain.
ACS Nano. 2025 Aug 19;19(32):29691-29701. doi: 10.1021/acsnano.5c09672. Epub 2025 Aug 8.
Plasmonic gold nanoparticle size and shape can be engineered chemical synthesis to achieve strong light-matter interactions at specific wavelengths. However, incorporation of tailored nanoparticles into functional devices is often limited by multistep, time-consuming processes specific to the type of substrate and nanoparticles. growth is an unconventional bottom-up approach where nanoparticles are grown directly on the target substrate, thereby circumventing colloidal synthesis and surface attachment. Despite these advantages, there remains a considerable gap in synthetic control and product quality between particles grown and their counterparts prepared in colloidal dispersion. Herein, we present optimized strategies for the growth of anisotropic gold nanoparticles directly on the internal walls of microfluidic channels, with no need for any top-down lithography or colloidal synthesis steps. Careful optimization enabled us to obtain shape-yields for gold nanorods around 90% (with size dispersion down to 15%)─a significant improvement compared to previous approaches, which have reported a maximum yield <37%. This result relied on identifying synthetic conditions that largely favor surface growth over colloidal growth in the flowing solution, which could be tuned through surface chemistry and flow rate. Overall, these results emphasize the potential of growth as a viable alternative to colloidal synthesis, with high control over the synthesis of anisotropic products directly on a substrate surface. We propose that microfluidic systems containing prepared nanostructures are promising for sensing applications, offering full control over nanoparticle crystallography, morphology, and surface chemistry.
等离子体金纳米颗粒的尺寸和形状可以通过化学合成来设计,以在特定波长下实现强光与物质的相互作用。然而,将定制的纳米颗粒整合到功能器件中通常受到特定于底物和纳米颗粒类型的多步骤、耗时过程的限制。生长是一种非常规的自下而上的方法,其中纳米颗粒直接在目标底物上生长,从而避免了胶体合成和表面附着。尽管有这些优点,但在生长的颗粒与其在胶体分散体中制备的对应物之间,合成控制和产品质量仍存在相当大的差距。在此,我们提出了在微流控通道内壁上直接生长各向异性金纳米颗粒的优化策略,无需任何自上而下的光刻或胶体合成步骤。仔细的优化使我们能够获得约90%的金纳米棒形状产率(尺寸分散低至15%),与之前报道的最大产率<37%的方法相比有显著提高。这一结果依赖于确定在流动溶液中极大地有利于表面生长而非胶体生长的合成条件,这可以通过表面化学和流速来调节。总体而言,这些结果强调了生长作为胶体合成的可行替代方案的潜力,能够高度控制直接在底物表面合成各向异性产物。我们提出,包含制备好的纳米结构的微流控系统在传感应用方面很有前景,能够对纳米颗粒的晶体学、形态和表面化学进行全面控制。