Ahmad Muhammad, Wang Zhiping, Fang Ming, Huang Zhixiang, Xie Guoda
The Key Laboratory of Intelligent Computing and Signal Processing, Ministry of Education, Hefei, 230601, China.
The Information Materials and Intelligent Sensing Laboratory of Anhui Province, Hefei, 230601, China.
Sci Rep. 2025 Aug 8;15(1):29096. doi: 10.1038/s41598-025-14795-2.
Orbital Angular Momentum (OAM) has gained significant attention in wireless communication, particularly for high-speed, large-capacity optical wireless communication (OWC) systems. However, current optical transmission methods encounter challenges in efficiently transmitting data due to limited OAM mode generation, reduced transmission privacy, and high atmospheric turbulence. The paper proposes an optimized and secure optical transmission in quantum wells to overcome these limitations using OAM and advanced modulation approaches. First of all, this paper proposes an orthogonal frequency division multiplexer (OFDM) with Quadrature amplitude modulation (QAM) and a Spatial Light Modulator (SLM) with Helical Phase Distribution, which enhances the OAM mode generation. After the signal generation process is completed, a hybrid method called Traffic Prediction Assisted with a Spotted Hyena Optimizer (TPAR-SHO) is proposed to analyze traffic in the optical transmission system. The Quantum Well Structure with Injection Locking Synchronization (QWS-ILCS) algorithm is proposed to improve the security of the transmission system. The OFDM with Proportional-Integral-Derivative (OFDM-PID) Controller approach is proposed to safeguard the optical transmission system from atmospheric turbulence. Finally, the Fast Fourier Transform with a Fiber Optical Performance monitoring tool (FFT-FOPM) is proposed for efficient signal processing and comprehensive network monitoring. The simulation results show that the proposed system achieved a low bit error rate (BER) of (17.63%), network throughput of (0.96 Mbps), data integrity rate of (75%), signal quality of (0.3 dB), and blocking probability of (0.03%), which outperforms the state-of-the-art. The results demonstrate that the proposed approach enhances optical transmission networks' efficiency, reliability, and security.
轨道角动量(OAM)在无线通信领域备受关注,特别是在高速、大容量光无线通信(OWC)系统中。然而,由于OAM模式生成受限、传输隐私性降低以及大气湍流严重,当前的光传输方法在高效传输数据方面面临挑战。本文提出了一种在量子阱中进行优化且安全的光传输方案,以利用OAM和先进调制方法克服这些限制。首先,本文提出了一种具有正交幅度调制(QAM)的正交频分复用器(OFDM)以及一种具有螺旋相位分布的空间光调制器(SLM),以增强OAM模式生成。在信号生成过程完成后,提出了一种名为斑点鬣狗优化器辅助流量预测(TPAR - SHO)的混合方法来分析光传输系统中的流量。提出了具有注入锁定同步的量子阱结构(QWS - ILCS)算法来提高传输系统的安全性。提出了具有比例积分微分(PID)控制器的OFDM方法来保护光传输系统免受大气湍流影响。最后,提出了结合光纤光学性能监测工具的快速傅里叶变换(FFT - FOPM)用于高效信号处理和全面网络监测。仿真结果表明,所提出的系统实现了低误码率(BER)为(17.63%)、网络吞吐量为(0.96 Mbps)、数据完整性率为(75%)、信号质量为(0.3 dB)以及阻塞概率为(0.03%),优于现有技术。结果表明,所提出的方法提高了光传输网络的效率、可靠性和安全性。