Yedekci Yagiz, Arimura Hidetaka, Jin Yu, Yilmaz Melek Tugce, Kodama Takumi, Ozyigit Gokhan, Yazici Gozde
Department of Radiation Oncology, Faculty of Medicine, Hacettepe University, Sihhiye, 06100, Ankara, Turkey.
Division of Medical Quantum Science, Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, 812-8582, Fukuoka, Japan.
Strahlenther Onkol. 2025 Aug 8. doi: 10.1007/s00066-025-02449-1.
PURPOSE: The aim of this study was to develop a radiomic model to non-invasively predict the risk of secondary enucleation (SE) in patients with uveal melanoma (UM) prior to stereotactic radiotherapy using pretreatment computed tomography (CT) and magnetic resonance (MR) images. MATERIALS AND METHODS: This retrospective study encompasses a cohort of 308 patients diagnosed with UM who underwent stereotactic radiosurgery (SRS) or fractionated stereotactic radiotherapy (FSRT) using the CyberKnife system (Accuray, Sunnyvale, CA, USA) between 2007 and 2018. Each patient received comprehensive ophthalmologic evaluations, including assessment of visual acuity, anterior segment examination, fundus examination, and ultrasonography. All patients were followed up for a minimum of 5 years. The cohort was composed of 65 patients who underwent SE (SE+) and 243 who did not (SE-). Radiomic features were extracted from pretreatment CT and MR images. To develop a robust predictive model, four different machine learning algorithms were evaluated using these features. RESULTS: The stacking model utilizing CT + MR radiomic features achieved the highest predictive performance, with an area under the curve (AUC) of 0.90, accuracy of 0.86, sensitivity of 0.81, and specificity of 0.90. The feature of robust mean absolute deviation derived from the Laplacian-of-Gaussian-filtered MR images was identified as the most significant predictor, demonstrating a statistically significant difference between SE+ and SE- cases (p = 0.005). CONCLUSION: Radiomic analysis of pretreatment CT and MR images can non-invasively predict the risk of SE in UM patients undergoing SRS/FSRT. The combined CT + MR radiomic model may inform more personalized therapeutic decisions, thereby reducing unnecessary radiation exposure and potentially improving patient outcomes.
目的:本研究的目的是开发一种放射组学模型,以在立体定向放射治疗前,利用治疗前计算机断层扫描(CT)和磁共振(MR)图像,无创预测葡萄膜黑色素瘤(UM)患者二次眼球摘除(SE)的风险。 材料与方法:这项回顾性研究纳入了2007年至2018年间308例诊断为UM并使用射波刀系统(Accuray,美国加利福尼亚州桑尼维尔)接受立体定向放射外科手术(SRS)或分次立体定向放射治疗(FSRT)的患者队列。每位患者均接受了全面的眼科评估,包括视力评估、眼前节检查、眼底检查和超声检查。所有患者均至少随访5年。该队列由65例接受SE的患者(SE+)和243例未接受SE的患者(SE-)组成。从治疗前CT和MR图像中提取放射组学特征。为了开发一个强大的预测模型,使用这些特征评估了四种不同的机器学习算法。 结果:利用CT+MR放射组学特征的堆叠模型实现了最高的预测性能,曲线下面积(AUC)为0.90,准确率为0.86,灵敏度为0.81,特异性为0.90。从高斯-拉普拉斯滤波后的MR图像中得出的稳健平均绝对偏差特征被确定为最显著的预测因子,在SE+和SE-病例之间显示出统计学上的显著差异(p=0.005)。 结论:对治疗前CT和MR图像进行放射组学分析可以无创预测接受SRS/FSRT的UM患者发生SE的风险。联合CT+MR放射组学模型可能有助于做出更个性化的治疗决策,从而减少不必要的辐射暴露,并可能改善患者的预后。
Clin Orthop Relat Res. 2024-9-1
Cochrane Database Syst Rev. 2018-1-22
Insights Imaging. 2024-1-7
Curr Oncol. 2023-7-3
Clin Exp Ophthalmol. 2023-7
Cancers (Basel). 2023-1-4
BMC Ophthalmol. 2022-4-9
Exp Ther Med. 2021-12