文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于立体定向放射治疗前的预处理CT和MRI对葡萄膜黑色素瘤继发眼球摘除风险的无创预测

Non-invasive prediction of the secondary enucleation risk in uveal melanoma based on pretreatment CT and MRI prior to stereotactic radiotherapy.

作者信息

Yedekci Yagiz, Arimura Hidetaka, Jin Yu, Yilmaz Melek Tugce, Kodama Takumi, Ozyigit Gokhan, Yazici Gozde

机构信息

Department of Radiation Oncology, Faculty of Medicine, Hacettepe University, Sihhiye, 06100, Ankara, Turkey.

Division of Medical Quantum Science, Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, 812-8582, Fukuoka, Japan.

出版信息

Strahlenther Onkol. 2025 Aug 8. doi: 10.1007/s00066-025-02449-1.


DOI:10.1007/s00066-025-02449-1
PMID:40781366
Abstract

PURPOSE: The aim of this study was to develop a radiomic model to non-invasively predict the risk of secondary enucleation (SE) in patients with uveal melanoma (UM) prior to stereotactic radiotherapy using pretreatment computed tomography (CT) and magnetic resonance (MR) images. MATERIALS AND METHODS: This retrospective study encompasses a cohort of 308 patients diagnosed with UM who underwent stereotactic radiosurgery (SRS) or fractionated stereotactic radiotherapy (FSRT) using the CyberKnife system (Accuray, Sunnyvale, CA, USA) between 2007 and 2018. Each patient received comprehensive ophthalmologic evaluations, including assessment of visual acuity, anterior segment examination, fundus examination, and ultrasonography. All patients were followed up for a minimum of 5 years. The cohort was composed of 65 patients who underwent SE (SE+) and 243 who did not (SE-). Radiomic features were extracted from pretreatment CT and MR images. To develop a robust predictive model, four different machine learning algorithms were evaluated using these features. RESULTS: The stacking model utilizing CT + MR radiomic features achieved the highest predictive performance, with an area under the curve (AUC) of 0.90, accuracy of 0.86, sensitivity of 0.81, and specificity of 0.90. The feature of robust mean absolute deviation derived from the Laplacian-of-Gaussian-filtered MR images was identified as the most significant predictor, demonstrating a statistically significant difference between SE+ and SE- cases (p = 0.005). CONCLUSION: Radiomic analysis of pretreatment CT and MR images can non-invasively predict the risk of SE in UM patients undergoing SRS/FSRT. The combined CT + MR radiomic model may inform more personalized therapeutic decisions, thereby reducing unnecessary radiation exposure and potentially improving patient outcomes.

摘要

目的:本研究的目的是开发一种放射组学模型,以在立体定向放射治疗前,利用治疗前计算机断层扫描(CT)和磁共振(MR)图像,无创预测葡萄膜黑色素瘤(UM)患者二次眼球摘除(SE)的风险。 材料与方法:这项回顾性研究纳入了2007年至2018年间308例诊断为UM并使用射波刀系统(Accuray,美国加利福尼亚州桑尼维尔)接受立体定向放射外科手术(SRS)或分次立体定向放射治疗(FSRT)的患者队列。每位患者均接受了全面的眼科评估,包括视力评估、眼前节检查、眼底检查和超声检查。所有患者均至少随访5年。该队列由65例接受SE的患者(SE+)和243例未接受SE的患者(SE-)组成。从治疗前CT和MR图像中提取放射组学特征。为了开发一个强大的预测模型,使用这些特征评估了四种不同的机器学习算法。 结果:利用CT+MR放射组学特征的堆叠模型实现了最高的预测性能,曲线下面积(AUC)为0.90,准确率为0.86,灵敏度为0.81,特异性为0.90。从高斯-拉普拉斯滤波后的MR图像中得出的稳健平均绝对偏差特征被确定为最显著的预测因子,在SE+和SE-病例之间显示出统计学上的显著差异(p=0.005)。 结论:对治疗前CT和MR图像进行放射组学分析可以无创预测接受SRS/FSRT的UM患者发生SE的风险。联合CT+MR放射组学模型可能有助于做出更个性化的治疗决策,从而减少不必要的辐射暴露,并可能改善患者的预后。

相似文献

[1]
Non-invasive prediction of the secondary enucleation risk in uveal melanoma based on pretreatment CT and MRI prior to stereotactic radiotherapy.

Strahlenther Onkol. 2025-8-8

[2]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[3]
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?

Clin Orthop Relat Res. 2024-9-1

[4]
Magnetic resonance perfusion for differentiating low-grade from high-grade gliomas at first presentation.

Cochrane Database Syst Rev. 2018-1-22

[5]
A Technical Report for Definitive Treatment of Uveal Melanoma With Stereotactic Radiosurgery and Retrobulbar Anesthesia.

Cureus. 2025-6-18

[6]
Thymoma habitat segmentation and risk prediction model using CT imaging and K-means clustering.

Med Phys. 2025-7

[7]
Direct Prediction of 48 Month Survival Status in Patients with Uveal Melanoma Using Deep Learning and Digital Cytopathology Images.

Cancers (Basel). 2025-1-13

[8]
Machine learning-based radiomics for differentiating lung cancer subtypes in brain metastases using CE-T1WI.

Front Oncol. 2025-6-19

[9]
Machine learning models for discriminating clinically significant from clinically insignificant prostate cancer using bi-parametric magnetic resonance imaging.

Diagn Interv Radiol. 2024-10-1

[10]
Prediction of EGFR Mutations in Lung Adenocarcinoma via CT Images: A Comparative Study of Intratumoral and Peritumoral Radiomics, Deep Learning, and Fusion Models.

Acad Radiol. 2025-5-5

本文引用的文献

[1]
The effect of feature normalization methods in radiomics.

Insights Imaging. 2024-1-7

[2]
Radiotherapy in Uveal Melanoma: A Review of Ocular Complications.

Curr Oncol. 2023-7-3

[3]
Current management of uveal melanoma: A review.

Clin Exp Ophthalmol. 2023-7

[4]
A segmentation-based method improving the performance of N4 bias field correction on T2weighted MR imaging data of the prostate.

Magn Reson Imaging. 2023-9

[5]
Impact of tumour volume and treatment delay on the outcome after linear accelerator-based fractionated stereotactic radiosurgery of uveal melanoma.

Br J Ophthalmol. 2024-2-21

[6]
Ocular Complications of Radiotherapy in Uveal Melanoma.

Cancers (Basel). 2023-1-4

[7]
Every other day stereotactic radiation therapy for the treatment of uveal melanoma decreases toxicity.

Radiother Oncol. 2022-11

[8]
Retrospective analysis of secondary enucleation for uveal melanoma after plaque radiotherapy.

BMC Ophthalmol. 2022-4-9

[9]
Local tumor control and treatment related toxicity after plaque brachytherapy for uveal melanoma: A systematic review and a data pooled analysis.

Radiother Oncol. 2022-1

[10]
Uveal melanoma diagnosis and current treatment options (Review).

Exp Ther Med. 2021-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索