Suppr超能文献

影像组学中特征归一化方法的效果

The effect of feature normalization methods in radiomics.

作者信息

Demircioğlu Aydin

机构信息

Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstrasse 55, 45147, Essen, Germany.

出版信息

Insights Imaging. 2024 Jan 7;15(1):2. doi: 10.1186/s13244-023-01575-7.

Abstract

OBJECTIVES

In radiomics, different feature normalization methods, such as z-Score or Min-Max, are currently utilized, but their specific impact on the model is unclear. We aimed to measure their effect on the predictive performance and the feature selection.

METHODS

We employed fifteen publicly available radiomics datasets to compare seven normalization methods. Using four feature selection and classifier methods, we used cross-validation to measure the area under the curve (AUC) of the resulting models, the agreement of selected features, and the model calibration. In addition, we assessed whether normalization before cross-validation introduces bias.

RESULTS

On average, the difference between the normalization methods was relatively small, with a gain of at most + 0.012 in AUC when comparing the z-Score (mean AUC: 0.707 ± 0.102) to no normalization (mean AUC: 0.719 ± 0.107). However, on some datasets, the difference reached + 0.051. The z-Score performed best, while the tanh transformation showed the worst performance and even decreased the overall predictive performance. While quantile transformation performed, on average, slightly worse than the z-Score, it outperformed all other methods on one out of three datasets. The agreement between the features selected by different normalization methods was only mild, reaching at most 62%. Applying the normalization before cross-validation did not introduce significant bias.

CONCLUSION

The choice of the feature normalization method influenced the predictive performance but depended strongly on the dataset. It strongly impacted the set of selected features.

CRITICAL RELEVANCE STATEMENT

Feature normalization plays a crucial role in the preprocessing and influences the predictive performance and the selected features, complicating feature interpretation.

KEY POINTS

• The impact of feature normalization methods on radiomic models was measured. • Normalization methods performed similarly on average, but differed more strongly on some datasets. • Different methods led to different sets of selected features, impeding feature interpretation. • Model calibration was not largely affected by the normalization method.

摘要

目的

在放射组学中,目前使用了不同的特征归一化方法,如z分数或最小-最大归一化,但它们对模型的具体影响尚不清楚。我们旨在衡量它们对预测性能和特征选择的影响。

方法

我们使用了15个公开可用的放射组学数据集来比较7种归一化方法。使用4种特征选择和分类器方法,我们通过交叉验证来测量所得模型的曲线下面积(AUC)、所选特征的一致性以及模型校准。此外,我们评估了交叉验证前的归一化是否会引入偏差。

结果

平均而言,归一化方法之间的差异相对较小,将z分数(平均AUC:0.707±0.102)与未归一化(平均AUC:0.719±0.107)相比,AUC最多增加了+0.012。然而,在一些数据集上,差异达到了+0.051。z分数表现最佳,而双曲正切变换表现最差,甚至降低了整体预测性能。虽然分位数变换平均表现略逊于z分数,但在三个数据集中的一个上优于所有其他方法。不同归一化方法所选特征之间的一致性仅为中等程度,最高达到62%。在交叉验证前应用归一化并未引入显著偏差。

结论

特征归一化方法的选择会影响预测性能,但很大程度上取决于数据集。它对所选特征集有很大影响。

关键相关性声明

特征归一化在预处理中起着关键作用,并影响预测性能和所选特征,使特征解释变得复杂。

要点

• 测量了特征归一化方法对放射组学模型的影响。• 归一化方法平均表现相似,但在一些数据集上差异更大。• 不同方法导致不同的所选特征集,妨碍特征解释。• 模型校准在很大程度上不受归一化方法的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e07d/10772134/a2ab9af65238/13244_2023_1575_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验