Suppr超能文献

用于预测甲苯/水分配系数的多保真度图神经网络

Multi-fidelity graph neural networks for predicting toluene/water partition coefficients.

作者信息

Nevolianis Thomas, Rittig Jan G, Mitsos Alexander, Leonhard Kai

机构信息

Institute of Technical Thermodynamics, RWTH Aachen University, 52062, Aachen, Germany.

Process Systems Engineering, RWTH Aachen University, 52074, Aachen, Germany.

出版信息

J Cheminform. 2025 Aug 8;17(1):123. doi: 10.1186/s13321-025-01057-6.

Abstract

Accurate prediction of toluene/water partition coefficients of neutral species is crucial in drug discovery and separation processes; however, data-driven modeling of these coefficients remains challenging due to limited available experimental data. To address the limitation of available data, we apply multi-fidelity learning approaches leveraging a quantum chemical dataset (low fidelity) of approximately 9000 entries generated by COSMO-RS and an experimental dataset (high fidelity) of about 250 entries collected from the literature. We explore the transfer learning, feature-augmented learning, and multi-target learning approaches in combination with graph neural networks, validating them on two external datasets: one with molecules similar to training data (EXT-Zamora) and one with more challenging molecules (EXT-SAMPL9). Our results show that multi-target learning significantly improves predictive accuracy, achieving a root-mean-square error of 0.44 units for the EXT-Zamora, compared to a root-mean-square error of 0.63 units for single-task models. For the EXT-SAMPL9 dataset, multi-target learning achieves a root-mean-square error of 1.02 units, indicating reasonable performance even for more complex molecular structures. These findings highlight the potential of multi-fidelity learning approaches that leverage quantum chemical data to improve toluene/water partition coefficient predictions and address challenges posed by limited experimental data. We expect the applicability of the methods used beyond just toluene/water partition coefficients.

摘要

准确预测中性物种的甲苯/水分配系数在药物发现和分离过程中至关重要;然而,由于可用的实验数据有限,对这些系数进行数据驱动的建模仍然具有挑战性。为了解决可用数据的局限性,我们应用多保真度学习方法,利用由COSMO-RS生成的约9000个条目的量子化学数据集(低保真度)和从文献中收集的约250个条目的实验数据集(高保真度)。我们结合图神经网络探索迁移学习、特征增强学习和多目标学习方法,并在两个外部数据集上对其进行验证:一个数据集包含与训练数据相似的分子(EXT-Zamora),另一个数据集包含更具挑战性的分子(EXT-SAMPL9)。我们的结果表明,多目标学习显著提高了预测准确性,EXT-Zamora的均方根误差为0.44个单位,而单任务模型的均方根误差为0.63个单位。对于EXT-SAMPL9数据集,多目标学习的均方根误差为1.02个单位,这表明即使对于更复杂的分子结构,其性能也是合理的。这些发现突出了利用量子化学数据的多保真度学习方法在改善甲苯/水分配系数预测以及应对有限实验数据带来的挑战方面的潜力。我们期望所使用的方法不仅适用于甲苯/水分配系数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4bf/12333204/05241b2b2ff8/13321_2025_1057_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验