Alsanie Ibrahim, Shephard Adam, Azarmehr Neda, Vargas Pablo, Pring Miranda, Rajpoot Nasir M, Khurram Syed Ali
Department of Oral Medicine and Diagnostic Sciences, College of Dentistry, King Saud University, Riyadh, Kingdom of Saudi Arabia.
Tissue Image Analytics Centre, Department of Computer Science, University of Warwick, Coventry, UK.
Sci Rep. 2025 Aug 9;15(1):29171. doi: 10.1038/s41598-025-15249-5.
This study uses artificial intelligence (AI) for differentiation between salivary gland tumours (SGT) using digitised Haematoxylin and Eosin stained whole-slide images (WSI). Machine learning (ML) classifiers were developed and tested using 320 scanned WSI. These included a benign versus malignant classifier (BvM) for automated identification of benign and malignant tumours, a malignant sub-typing (MST) classifier for subtyping four most common malignant SGT and a third classifier for malignant tumour grading. ML results were also compared with deep learning models. All ML classifiers showed an excellent accuracy. An F1 score of 0.95 was seen for benign vs. malignant and malignant subtyping tasks and 0.87 for automated grading. In comparison, the best performing DL models showed F1 scores of 0.80, 0.60 and 0.70 for the same tasks respectively. External validation on an independent cohort demonstrated good accuracy, with an F1 score of 0.87 for both the benign vs. malignant and grading classifiers. A notable association between cellularity, nuclear haematoxylin, cytoplasmic eosin, and nucleus/cell ratio (p < 0.01) were seen between tumours. Our novel findings show that AI can be used for automated differentiation between SGT. Analysis of larger multicentre cohorts is required to establish the significance and clinical usefulness of these findings.
本研究利用人工智能(AI),通过数字化苏木精和伊红染色的全切片图像(WSI)对唾液腺肿瘤(SGT)进行鉴别。使用320张扫描的WSI开发并测试了机器学习(ML)分类器。这些分类器包括用于自动识别良性和恶性肿瘤的良性与恶性分类器(BvM)、用于对四种最常见的恶性SGT进行亚型分类的恶性亚型(MST)分类器以及用于恶性肿瘤分级的第三种分类器。ML结果还与深度学习模型进行了比较。所有ML分类器均显示出优异的准确率。良性与恶性及恶性亚型分类任务的F1分数为0.95,自动分级的F1分数为0.87。相比之下,表现最佳的DL模型在相同任务中的F1分数分别为0.80、0.60和0.70。在一个独立队列上的外部验证显示出良好的准确率,良性与恶性及分级分类器的F1分数均为0.87。在肿瘤之间观察到细胞密度、核苏木精、细胞质伊红和核/细胞比率之间存在显著关联(p < 0.01)。我们的新发现表明,AI可用于SGT的自动鉴别。需要分析更大规模的多中心队列,以确定这些发现的意义和临床实用性。
Int J Radiat Oncol Biol Phys. 2025-7-15
Stud Health Technol Inform. 2025-8-7
Head Neck Pathol. 2022-12
Acta Cytol. 2020