文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

探索基于人工智能分析唾液腺肿瘤组织病理学变异性的可行性。

Exploring the feasibility of AI-based analysis of histopathological variability in salivary gland tumours.

作者信息

Alsanie Ibrahim, Shephard Adam, Azarmehr Neda, Vargas Pablo, Pring Miranda, Rajpoot Nasir M, Khurram Syed Ali

机构信息

Department of Oral Medicine and Diagnostic Sciences, College of Dentistry, King Saud University, Riyadh, Kingdom of Saudi Arabia.

Tissue Image Analytics Centre, Department of Computer Science, University of Warwick, Coventry, UK.

出版信息

Sci Rep. 2025 Aug 9;15(1):29171. doi: 10.1038/s41598-025-15249-5.


DOI:10.1038/s41598-025-15249-5
PMID:40783435
Abstract

This study uses artificial intelligence (AI) for differentiation between salivary gland tumours (SGT) using digitised Haematoxylin and Eosin stained whole-slide images (WSI). Machine learning (ML) classifiers were developed and tested using 320 scanned WSI. These included a benign versus malignant classifier (BvM) for automated identification of benign and malignant tumours, a malignant sub-typing (MST) classifier for subtyping four most common malignant SGT and a third classifier for malignant tumour grading. ML results were also compared with deep learning models. All ML classifiers showed an excellent accuracy. An F1 score of 0.95 was seen for benign vs. malignant and malignant subtyping tasks and 0.87 for automated grading. In comparison, the best performing DL models showed F1 scores of 0.80, 0.60 and 0.70 for the same tasks respectively. External validation on an independent cohort demonstrated good accuracy, with an F1 score of 0.87 for both the benign vs. malignant and grading classifiers. A notable association between cellularity, nuclear haematoxylin, cytoplasmic eosin, and nucleus/cell ratio (p < 0.01) were seen between tumours. Our novel findings show that AI can be used for automated differentiation between SGT. Analysis of larger multicentre cohorts is required to establish the significance and clinical usefulness of these findings.

摘要

本研究利用人工智能(AI),通过数字化苏木精和伊红染色的全切片图像(WSI)对唾液腺肿瘤(SGT)进行鉴别。使用320张扫描的WSI开发并测试了机器学习(ML)分类器。这些分类器包括用于自动识别良性和恶性肿瘤的良性与恶性分类器(BvM)、用于对四种最常见的恶性SGT进行亚型分类的恶性亚型(MST)分类器以及用于恶性肿瘤分级的第三种分类器。ML结果还与深度学习模型进行了比较。所有ML分类器均显示出优异的准确率。良性与恶性及恶性亚型分类任务的F1分数为0.95,自动分级的F1分数为0.87。相比之下,表现最佳的DL模型在相同任务中的F1分数分别为0.80、0.60和0.70。在一个独立队列上的外部验证显示出良好的准确率,良性与恶性及分级分类器的F1分数均为0.87。在肿瘤之间观察到细胞密度、核苏木精、细胞质伊红和核/细胞比率之间存在显著关联(p < 0.01)。我们的新发现表明,AI可用于SGT的自动鉴别。需要分析更大规模的多中心队列,以确定这些发现的意义和临床实用性。

相似文献

[1]
Exploring the feasibility of AI-based analysis of histopathological variability in salivary gland tumours.

Sci Rep. 2025-8-9

[2]
Comparative Analysis of Cytologic and Histologic Grading of Malignant Salivary Gland Tumors and Salivary Gland Neoplasms of Uncertain Malignant Potential: A 6-Year Review at a Single Institution.

Diagn Cytopathol. 2025-9

[3]
Fully Automated Online Adaptive Radiation Therapy Decision-Making for Cervical Cancer Using Artificial Intelligence.

Int J Radiat Oncol Biol Phys. 2025-7-15

[4]
A deep learning approach to direct immunofluorescence pattern recognition in autoimmune bullous diseases.

Br J Dermatol. 2024-7-16

[5]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[6]
The effectiveness and cost-effectiveness of carmustine implants and temozolomide for the treatment of newly diagnosed high-grade glioma: a systematic review and economic evaluation.

Health Technol Assess. 2007-11

[7]
A Scoping Review of AI/ML Algorithm Updating Practices for Model Continuity and Patient Safety Using a Simplified Checklist.

Stud Health Technol Inform. 2025-8-7

[8]
Artificial intelligence-based prediction of organ involvement in Sjogren's syndrome using labial gland biopsy whole-slide images.

Clin Rheumatol. 2025-6-5

[9]
Artificial intelligence for segmentation and classification in lumbar spinal stenosis: an overview of current methods.

Eur Spine J. 2025-3

[10]
Portable Ultrasound Bladder Volume Measurement Over Entire Volume Range Using a Deep Learning Artificial Intelligence Model in a Selected Cohort: A Proof of Principle Study.

Neurourol Urodyn. 2025-8

本文引用的文献

[1]
A Recognition System for Diagnosing Salivary Gland Neoplasms Based on Vision Transformer.

Am J Pathol. 2025-2

[2]
Development and Evaluation of a Convolutional Neural Network for Microscopic Diagnosis Between Pleomorphic Adenoma and Carcinoma Ex-Pleomorphic Adenoma.

Head Neck. 2025-3

[3]
A graph-learning based model for automatic diagnosis of Sjögren's syndrome on digital pathological images: a multicentre cohort study.

J Transl Med. 2024-8-8

[4]
Distribution and Frequency of Salivary Gland Tumours: An International Multicenter Study.

Head Neck Pathol. 2022-12

[5]
Pan-cancer image-based detection of clinically actionable genetic alterations.

Nat Cancer. 2020-8

[6]
An artificial intelligence algorithm for prostate cancer diagnosis in whole slide images of core needle biopsies: a blinded clinical validation and deployment study.

Lancet Digit Health. 2020-8

[7]
The impact of pre- and post-image processing techniques on deep learning frameworks: A comprehensive review for digital pathology image analysis.

Comput Biol Med. 2021-1

[8]
The Myoepithelial Cells of Salivary Intercalated Duct-type Intraductal Carcinoma Are Neoplastic: A Study Using Combined Whole-slide Imaging, Immunofluorescence, and RET Fluorescence In Situ Hybridization.

Am J Surg Pathol. 2021-4-1

[9]
Use of artificial intelligence in diagnosis of head and neck precancerous and cancerous lesions: A systematic review.

Oral Oncol. 2020-11

[10]
Nuclear Morphology and the Biology of Cancer Cells.

Acta Cytol. 2020

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索