Department of Medicine III, University Hospital RWTH Aachen, Aa-chen, Germany.
German Cancer Consortium (DKTK), Heidelberg, Germany.
Nat Cancer. 2020 Aug;1(8):789-799. doi: 10.1038/s43018-020-0087-6. Epub 2020 Jul 27.
Molecular alterations in cancer can cause phenotypic changes in tumor cells and their micro-environment. Routine histopathology tissue slides - which are ubiquitously available - can reflect such morphological changes. Here, we show that deep learning can consistently infer a wide range of genetic mutations, molecular tumor subtypes, gene expression signatures and standard pathology biomarkers directly from routine histology. We developed, optimized, validated and publicly released a one-stop-shop workflow and applied it to tissue slides of more than 5000 patients across multiple solid tumors. Our findings show that a single deep learning algorithm can be trained to predict a wide range of molecular alterations from routine, paraffin-embedded histology slides stained with hematoxylin and eosin. These predictions generalize to other populations and are spatially resolved. Our method can be implemented on mobile hardware, potentially enabling point-of-care diagnostics for personalized cancer treatment. More generally, this approach could elucidate and quantify genotype-phenotype links in cancer.
癌症中的分子改变会导致肿瘤细胞及其微环境的表型变化。常规的组织病理学切片——广泛可用——可以反映这种形态变化。在这里,我们表明深度学习可以从常规组织病理学中一致地推断出广泛的基因突变、分子肿瘤亚型、基因表达特征和标准病理学生物标志物。我们开发、优化、验证并公开发布了一个一站式工作流程,并将其应用于来自多个实体瘤的 5000 多名患者的组织切片。我们的研究结果表明,可以训练单个深度学习算法来预测从常规、石蜡包埋、用苏木精和曙红染色的组织学切片中广泛的分子改变。这些预测可以推广到其他人群,并具有空间分辨率。我们的方法可以在移动硬件上实现,有可能实现个性化癌症治疗的即时诊断。更一般地说,这种方法可以阐明和量化癌症中的基因型-表型联系。