Suppr超能文献

倾斜狭窄动脉中含铜和石墨烯纳米颗粒的血流数学建模

Mathematical modeling of blood flow with copper and graphene nanoparticles in inclined stenotic arteries.

作者信息

Zar Pooriya Majidi, Poolaei Moziraji Zahra, Azar Ali Ahmadi

机构信息

Department of Mechanical Engineering, NT.C., Islamic Azad University, Tehran, Iran.

出版信息

Sci Rep. 2025 Aug 9;15(1):29155. doi: 10.1038/s41598-025-14075-z.

Abstract

This research investigates hemodynamic behavior in stenosed arteries using a rheological model that integrates hybrid nanoparticles (copper and graphene) suspended in blood. A mathematical framework is developed to analyze flow dynamics in an inclined artery with mild stenosis, incorporating electromagnetic fields, Hall currents, heat generation, and porous media effects governed by Darcy's law. Simplifications under mild stenosis and low Reynolds number conditions enable analytical solutions via the homotopy perturbation method (HPM) and Akbari Ganji Method (AGM). The minimal error observed for axial velocity is [Formula: see text], while that for temperature is [Formula: see text]. Key findings reveal that hybrid nanoparticle enrichment reduces blood flow resistance, and elevated Hall parameters significantly decrease wall shear stress at the arterial boundary. Additionally, an increase in the Darcy number leads to higher axial velocity in all cases. Streamline visualizations demonstrate altered flow patterns in stenosed regions under varying nanoparticle volumes and electromagnetic inputs. Notably, Hall currents exert a pronounced influence on nanoparticle-enhanced flow behavior, underscoring their relevance in biomedical contexts. The efficacy of HPM and AGM in resolving nonlinear momentum equations is validated, supporting their utility in modeling complex bio-nanofluid systems. These insights advance applications in targeted drug delivery, bio-nanofluid mechanics, and therapeutic device design. They offer pathways for optimizing nanoparticle-mediated treatments in cardiovascular diseases and oncology.

摘要

本研究使用一种流变模型来研究狭窄动脉中的血液动力学行为,该模型整合了悬浮在血液中的混合纳米颗粒(铜和石墨烯)。建立了一个数学框架,以分析具有轻度狭窄的倾斜动脉中的流动动力学,纳入了电磁场、霍尔电流、发热以及由达西定律控制的多孔介质效应。在轻度狭窄和低雷诺数条件下的简化使得能够通过同伦摄动法(HPM)和阿克巴里·甘吉法(AGM)获得解析解。观察到的轴向速度的最小误差为[公式:见正文],而温度的最小误差为[公式:见正文]。主要发现表明,混合纳米颗粒的富集降低了血流阻力,霍尔参数的升高显著降低了动脉边界处的壁面剪应力。此外,在所有情况下,达西数的增加都会导致更高的轴向速度。流线可视化展示了在不同纳米颗粒体积和电磁输入下狭窄区域内改变的流动模式。值得注意的是,霍尔电流对纳米颗粒增强的流动行为有显著影响,突出了它们在生物医学背景下的相关性。验证了HPM和AGM在求解非线性动量方程方面的有效性,支持了它们在复杂生物纳米流体系统建模中的实用性。这些见解推动了在靶向药物递送、生物纳米流体力学和治疗设备设计中的应用。它们为优化心血管疾病和肿瘤学中纳米颗粒介导的治疗提供了途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67d1/12335543/5a3023f74faa/41598_2025_14075_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验