Suppr超能文献

OncoTrace-TOO:使用转录组特征识别癌症组织起源的可解释机器学习框架。

OncoTrace-TOO: Interpretable Machine Learning Framework for Cancer Tissue-of-Origin Identification Using Transcriptomic Signatures.

作者信息

Hao Yang, Huang Haochun, Huang Daiyun, Ruan Jianwen, Liu Xin, Zhang Jianquan

机构信息

Hepatobiliary and Pancreatic Surgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China.

School of Life Sciences and Technology, Shanghai Jiao Tong University, Shanghai, China.

出版信息

Cancer Rep (Hoboken). 2025 Aug;8(8):e70311. doi: 10.1002/cnr2.70311.

Abstract

BACKGROUND

Cancer of unknown primary remains a formidable diagnostic challenge due to the inability to pinpoint the primary tumor site, which restricts the use of targeted therapeutics. Although machine-learning methods that integrate transcriptomic approaches have provided valuable insights into tumor origins, they often face challenges in distinguishing biologically similar tumors and typically lack biological interpretability.

AIMS

This study aims to develop a transparent and biologically interpretable machine learning framework to accurately classify tissue-of-origin across diverse cancer types, thereby facilitation clinical diagnosis.

METHODS

We designed OncoTrace-TOO, a novel tissue-of-origin classification model based on gene expression profiles. The model utilizes pan-cancer discriminative molecular features identified through one-vs-rest differential expression analysis and applies logistic regression as the classification algorithm.

RESULTS

OncoTrace-TOO achieved an overall accuracy of 0.967, with perfect classification for seven cancer types (e.g., CHOL, DLBC, and LAML). The model demonstrated high predictive accuracy in both primary and metastatic cancers across TCGA and GEO validation datasets, with enhanced capability in resolving histologically related malignancies as well as classifying rare cancer subtypes. When applied to independent clinical tumor samples, the model achieved TOO prediction accuracies of 0.857, further validating its robustness. Importantly, the framework offers biologically interpretable predictions by revealing tumor-specific molecular signatures, thus enhancing its clinical applicability.

CONCLUSIONS

OncoTrace-TOO not only offers high predictive accuracy for tissue-of-origin classification, but also delivers biologically meaningful insights that support clinical decision-making. This framework holds promise for improving diagnostic precision and guiding personalized treatment in challenging cancer cases.

摘要

背景

由于无法确定原发性肿瘤部位,原发灶不明的癌症仍然是一个巨大的诊断挑战,这限制了靶向治疗的应用。尽管整合转录组学方法的机器学习方法为肿瘤起源提供了有价值的见解,但它们在区分生物学上相似的肿瘤时往往面临挑战,并且通常缺乏生物学可解释性。

目的

本研究旨在开发一个透明且具有生物学可解释性的机器学习框架,以准确分类不同癌症类型的组织起源,从而促进临床诊断。

方法

我们设计了OncoTrace-TOO,一种基于基因表达谱的新型组织起源分类模型。该模型利用通过一对多差异表达分析确定的泛癌鉴别分子特征,并应用逻辑回归作为分类算法。

结果

OncoTrace-TOO的总体准确率达到0.967,对七种癌症类型(如胆管癌、弥漫性大B细胞淋巴瘤和急性髓系白血病)实现了完美分类。该模型在TCGA和GEO验证数据集中的原发性和转移性癌症中均表现出高预测准确率,在解决组织学相关恶性肿瘤以及分类罕见癌症亚型方面能力增强。当应用于独立的临床肿瘤样本时,该模型的组织起源预测准确率达到0.857,进一步验证了其稳健性。重要的是,该框架通过揭示肿瘤特异性分子特征提供了具有生物学可解释性的预测,从而增强了其临床适用性。

结论

OncoTrace-TOO不仅为组织起源分类提供了高预测准确率,还提供了支持临床决策的生物学有意义的见解。该框架有望提高诊断精度,并在具有挑战性的癌症病例中指导个性化治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ae2/12335898/86ab21868238/CNR2-8-e70311-g006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验