Xiong Xin, Huang Jingchun, Li Siming, He Jianfeng, Wang Shaobo
Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Yunnan Key Laboratory of Artificial Intelligence, Kunming, China.
PET/CT Center, Affiliated Hospital of Kunming University of Science and Technology, First People's Hospital of Yunnan Province, Kunming, China.
Quant Imaging Med Surg. 2025 Aug 1;15(8):6654-6666. doi: 10.21037/qims-2024-2767. Epub 2025 Jul 29.
BACKGROUND: Optimization algorithms provide robust analytical frameworks for assessing hepatocellular carcinoma (HCC) pharmacokinetics based on dynamic positron emission tomography/computed tomography (PET/CT) scans. The aim of this study was to assess the role of estimating HCC pharmacokinetics from PET/ CT scans via the Bayesian optimization (BO) method and the dual-phase (DP) and multiobjective (MO) strategies into BO (DPMO-BO) method. METHODS: Five-minute dynamic and one-minute static PET/CT imaging data derived from 27 HCC tumors were used to estimate kinetic parameters via a double-input three-compartment model. The role of pharmacokinetic parameters in distinguishing HCC was compared among the Bayesian method (BM), BO method, and DPMO-BO method. The fitting deviation between the predictions of the model and the actual observations was assessed via the root mean square error (RMSE). RESULTS: The results demonstrated that the BM significantly distinguished HCC from background liver tissues with , , , and (all P<0.05), whereas the BO method achieved this degree of differentiation for and (both P<0.001). The DPMO-BO method resulted in significant differences in all of these parameters (all P<0.05). DPMO-BO yielded greater area under the receiver operating characteristic (ROC) curve (AUC) values for (AUC =0.709) than did BO (AUC =0.595, P<0.001). Additionally, reduced RMSEs for HCC and normal liver tissues were observed with DPMO-BO (1.226 and 1.051, respectively) relative to those values obtained with the BM (1.324 and 1.118, respectively) and BO (1.308 and 1.143, respectively). CONCLUSIONS: The BO method can be used to assess HCC pharmacokinetics, whereas the DPMO-BO method further enhances diagnostic performance by achieving improved fitting accuracy.
背景:优化算法为基于动态正电子发射断层扫描/计算机断层扫描(PET/CT)评估肝细胞癌(HCC)的药代动力学提供了强大的分析框架。本研究的目的是评估通过贝叶斯优化(BO)方法以及将双相(DP)和多目标(MO)策略融入BO的双相多目标贝叶斯优化(DPMO-BO)方法从PET/CT扫描估计HCC药代动力学的作用。 方法:使用来自27个HCC肿瘤的5分钟动态和1分钟静态PET/CT成像数据,通过双输入三室模型估计动力学参数。比较了贝叶斯方法(BM)、BO方法和DPMO-BO方法中药代动力学参数在区分HCC方面的作用。通过均方根误差(RMSE)评估模型预测与实际观察值之间的拟合偏差。 结果:结果表明,BM能显著区分HCC与背景肝组织,其 、 、 、 (均P<0.05),而BO方法对 和 实现了这种区分程度(均P<0.001)。DPMO-BO方法在所有这些参数上均产生了显著差异(均P<0.05)。DPMO-BO在 方面产生的受试者操作特征曲线(ROC)下面积(AUC)值(AUC =0.709)大于BO(AUC =0.595,P<0.001)。此外,相对于BM(分别为1.324和1.118)和BO(分别为1.308和1.143)获得的值,DPMO-BO观察到HCC和正常肝组织的RMSE降低(分别为1.226和1.051)。 结论:BO方法可用于评估HCC药代动力学,而DPMO-BO方法通过提高拟合精度进一步增强了诊断性能。
Cochrane Database Syst Rev. 2015-9-29
Cochrane Database Syst Rev. 2014-11-13
Clin Orthop Relat Res. 2025-3-1
Cochrane Database Syst Rev. 2015-1-28
Cancers (Basel). 2024-10-31
Biology (Basel). 2024-5-16
Support Care Cancer. 2023-10-11
Int J Mol Sci. 2022-9-26