文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于深度学习模型预测上皮性卵巢癌患者的预后。

Predicting the prognosis of epithelial ovarian cancer patients based on deep learning models.

作者信息

Li Zihan, Wang Jiao, Zhang Yixin, Yang Zhen, Zhou Fanchen, Bai Xueting, Zhang Qian, Zhen Wenchong, Xu Rongxuan, Wu Wei, Yao Zhihan, Li Xiaofeng, Yang Yiming

机构信息

Department of Epidemiology and Health Statistics, Dalian Medical University, Dalian, China.

Dalian Municipal Central Hospital, Central Hospital of Dalian University of Technology, Dalian, China.

出版信息

Front Oncol. 2025 Jul 25;15:1592746. doi: 10.3389/fonc.2025.1592746. eCollection 2025.


DOI:10.3389/fonc.2025.1592746
PMID:40786516
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12331489/
Abstract

BACKGROUND: Epithelial ovarian cancer(EOC) has a higher mortality and morbidity rate than other types, and it has a dramatic impact on the survival of ovarian cancer(OC) patients. Therefore, investigating, developing and validating prognostic models to predict overall survival(OS) in patients with epithelial ovarian cancer represents an area of research with significant clinical implications. METHODS: Patients with a confirmed diagnosis of epithelial ovarian cancer from 2010 to 2017 in The Surveillance, Epidemiology, and End Results(SEER) database were identified for enrollment based on inclusion and exclusion criteria(N=10902). Patients with epithelial ovarian cancer diagnosed from 2010 to 2022 were selected from Dalian Municipal Central Hospital as an external validation cohort based on the same criteria (N=116). COX proportional risk regression for screening independent prognostic factors. Survival outcomes were compared between different risk subgroups based on Kaplan-Meier analysis. Three predictive models were developed using machine learning(ML) techniques, and another was a nomogram based on COX proportional risk regression for estimating 3-year and 5-year overall survival in patients with epithelial ovarian cancer. Evaluation of several models based on multiple metrics including C-index, ROC curve, calibration curve and decision curve analysis (DCA). RESULTS: Through univariate and multivariate COX proportional risk regression analyses, we selected 12 significantly independent prognostic factors affecting overall survival (P<0.05). In conclusion, comparing several models cited, it was found that DeepSurv (Deep Survival) model had the best performance in both internal validation set and external validation set. The C-index for internal validation was 0.715, and the 3-year and 5-year ROC curves were 0.746 and 0.766; the C-index for external validation was 0.672, and the 3-year and 5-year ROC curves were 0.731 and 0.756. CONCLUSION: This study successfully developed a nomogram and three machine learning models, which collectively served as important predictive instruments to support clinical decision making.

摘要

背景:上皮性卵巢癌(EOC)的死亡率和发病率高于其他类型,对卵巢癌(OC)患者的生存有巨大影响。因此,研究、开发和验证预测上皮性卵巢癌患者总生存期(OS)的预后模型是一个具有重要临床意义的研究领域。 方法:根据纳入和排除标准,在监测、流行病学和最终结果(SEER)数据库中确定2010年至2017年确诊为上皮性卵巢癌的患者进行入组(N = 10902)。基于相同标准,从大连市中心医院选取2010年至2022年诊断为上皮性卵巢癌的患者作为外部验证队列(N = 116)。采用COX比例风险回归筛选独立预后因素。基于Kaplan-Meier分析比较不同风险亚组之间的生存结局。使用机器学习(ML)技术开发了三种预测模型,另一种是基于COX比例风险回归的列线图,用于估计上皮性卵巢癌患者的3年和5年总生存期。基于包括C指数、ROC曲线、校准曲线和决策曲线分析(DCA)在内的多个指标对几种模型进行评估。 结果:通过单因素和多因素COX比例风险回归分析,我们选择了12个影响总生存期的显著独立预后因素(P < 0.05)。总之,比较所引用的几种模型发现,DeepSurv(深度生存)模型在内部验证集和外部验证集中均表现最佳。内部验证的C指数为0.715,3年和5年ROC曲线分别为0.746和0.766;外部验证的C指数为0.672,3年和5年ROC曲线分别为0.731和0.756。 结论:本研究成功开发了一个列线图和三种机器学习模型,它们共同作为支持临床决策的重要预测工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bd3/12331489/29951f8a4bab/fonc-15-1592746-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bd3/12331489/252c239c48e0/fonc-15-1592746-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bd3/12331489/669af8a70cf1/fonc-15-1592746-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bd3/12331489/5782c58b3530/fonc-15-1592746-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bd3/12331489/8490379dda4e/fonc-15-1592746-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bd3/12331489/16806012c1b0/fonc-15-1592746-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bd3/12331489/29951f8a4bab/fonc-15-1592746-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bd3/12331489/252c239c48e0/fonc-15-1592746-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bd3/12331489/669af8a70cf1/fonc-15-1592746-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bd3/12331489/5782c58b3530/fonc-15-1592746-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bd3/12331489/8490379dda4e/fonc-15-1592746-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bd3/12331489/16806012c1b0/fonc-15-1592746-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bd3/12331489/29951f8a4bab/fonc-15-1592746-g006.jpg

相似文献

[1]
Predicting the prognosis of epithelial ovarian cancer patients based on deep learning models.

Front Oncol. 2025-7-25

[2]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[3]
Impact of residual disease as a prognostic factor for survival in women with advanced epithelial ovarian cancer after primary surgery.

Cochrane Database Syst Rev. 2022-9-26

[4]
Clinical diagnostic and prognostic value of homocysteine combined with hemoglobin [f (Hcy-Hb)] in cardio-renal syndrome caused by primary acute myocardial infarction.

J Transl Med. 2025-7-23

[5]
Development and validation of a Log odds of negative lymph nodes/T stage ratio-based prognostic model for gastric cancer.

Front Oncol. 2025-6-3

[6]
Construction of a clinical prediction model for overall survival and cancer-specific survival in malignant phyllode tumor of the breast based on the SEER database.

Discov Oncol. 2025-7-1

[7]
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?

Clin Orthop Relat Res. 2024-9-1

[8]
Development and validation of nomograms for predicting survival of locally advanced rectosigmoid junction cancer patients: a SEER database analysis.

Transl Cancer Res. 2025-5-30

[9]
Individualized Prediction of Overall Survival Time for Patients with Primary Intramedullary Spinal Cord Astrocytoma: A Population-Based Study.

World Neurosurg. 2025-1

[10]
A prognostic nomogram and risk classification system of elderly patients with extraosseous plasmacytoma: a SEER database analysis.

J Cancer Res Clin Oncol. 2023-12

本文引用的文献

[1]
Preoperative clinical radiomics model based on deep learning in prognostic assessment of patients with gallbladder carcinoma.

BMC Cancer. 2025-2-25

[2]
Progress and Challenges in Integrating Nutritional Care into Oncology Practice: Results from a National Survey on Behalf of the NutriOnc Research Group.

Nutrients. 2025-1-5

[3]
Combined effects of nutrition, inflammatory status, and sleep quality on mortality in cancer survivors.

BMC Cancer. 2024-11-27

[4]
Proteomic landscape of epithelial ovarian cancer.

Nat Commun. 2024-7-31

[5]
Efficacy and safety of pressurized intraperitoneal aerosol chemotherapy (PIPAC) in ovarian cancer: a systematic review of current evidence.

Arch Gynecol Obstet. 2024-10

[6]
Effect of different treatment modalities on the prognosis of stage IV epithelial ovarian cancer: analysis of the SEER database.

BMC Womens Health. 2024-6-15

[7]
Deep learning models for predicting the survival of patients with hepatocellular carcinoma based on a surveillance, epidemiology, and end results (SEER) database analysis.

Sci Rep. 2024-6-9

[8]
Construction and validation of log odds of positive lymph nodes (LODDS)-based nomograms for predicting overall survival and cancer-specific survival in ovarian clear cell carcinoma patients.

Front Oncol. 2024-3-21

[9]
Comprehensive machine learning-based preoperative blood features predict the prognosis for ovarian cancer.

BMC Cancer. 2024-2-26

[10]
A novel clinical nomogram for predicting cancer-specific survival in patients with non-serous epithelial ovarian cancer: A real-world analysis based on the Surveillance, Epidemiology, and End Results database and external validation in a tertiary center.

Transl Oncol. 2024-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索