Department of Gastroenterology, The First Affiliated Hospital of Henan University of Chinese Medicine, The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, 450000, China.
Personnel Department, The First Affiliated Hospitalof Henan University of Chinese Medicine, Zhengzhou, 450000, China.
Sci Rep. 2024 Jun 9;14(1):13232. doi: 10.1038/s41598-024-63531-9.
Hepatocellular carcinoma (HCC) is a common malignancy with poor survival and requires long-term follow-up. Hence, we collected information on patients with Primary Hepatocellular Carcinoma in the United States from the Surveillance, Epidemiology, and EndResults (SEER) database. We used this information to establish a deep learning with a multilayer neural network (the NMTLR model) for predicting the survival rate of patients with Primary Hepatocellular Carcinoma. HCC patients pathologically diagnosed between January 2011 and December 2015 in the SEER (Surveillance, Epidemiology, and End Results) database of the National Cancer Institute of the United States were selected as study subjects. We utilized two deep learning-based algorithms (DeepSurv and Neural Multi-Task Logistic Regression [NMTLR]) and a machine learning-based algorithm (Random Survival Forest [RSF]) for model training. A multivariable Cox Proportional Hazards (CoxPH) model was also constructed for comparison. The dataset was randomly divided into a training set and a test set in a 7:3 ratio. The training dataset underwent hyperparameter tuning through 1000 iterations of random search and fivefold cross-validation. Model performance was assessed using the concordance index (C-index), Brier score, and Integrated Brier Score (IBS). The accuracy of predicting 1-year, 3-year, and 5-year survival rates was evaluated using Receiver Operating Characteristic (ROC) curves, calibration plots, and Area Under the Curve (AUC). The primary outcomes were the 1-year, 3-year, and 5-year overall survival rates. Models were developed using DeepSurv, NMTLR, RSF, and Cox Proportional Hazards regression. Model differentiation was evaluated using the C-index, calibration with concordance plots, and risk stratification capability with the log-rank test. The study included 2197 HCC patients, randomly divided into a training cohort (70%, n = 1537) and a testing cohort (30%, n = 660). Clinical characteristics between the two cohorts showed no significant statistical difference (p > 0.05). The deep learning models outperformed both RSF and CoxPH models, with C-indices of 0.735 (NMTLR) and 0.731 (DeepSurv) in the test dataset. The NMTLR model demonstrated enhanced accuracy and well-calibrated survival estimates, achieving an Area Under the Curve (AUC) of 0.824 for 1-year survival predictions, 0.813 for 3-year, and 0.803 for 5-year survival rates. This model's superior calibration and discriminative ability enhance its utility for clinical prognostication in Primary Hepatocellular Carcinoma. We deployed the NMTLR model as a web application for clinical practice. The NMTLR model have potential advantages over traditional linear models in prognostic assessment and treatment recommendations. This novel analytical approach may provide reliable information on individual survival and treatment recommendations for patients with primary liver cancer.
肝细胞癌(HCC)是一种常见的恶性肿瘤,其生存率较差,需要长期随访。因此,我们从美国国家癌症研究所的监测、流行病学和最终结果(SEER)数据库中收集了美国原发性肝细胞癌患者的信息。我们利用这些信息建立了一个具有多层神经网络的深度学习模型(NMTLR 模型),用于预测原发性肝细胞癌患者的生存率。
选择美国国家癌症研究所 SEER(监测、流行病学和最终结果)数据库中 2011 年 1 月至 2015 年 12 月期间经病理诊断为 HCC 的患者作为研究对象。我们利用了两种基于深度学习的算法(DeepSurv 和神经多任务逻辑回归 [NMTLR])和一种基于机器学习的算法(随机生存森林 [RSF])进行模型训练。还构建了多变量 Cox 比例风险(CoxPH)模型进行比较。该数据集以 7:3 的比例随机分为训练集和测试集。通过 1000 次随机搜索和 5 倍交叉验证对训练数据集进行超参数调整。使用一致性指数(C 指数)、Brier 评分和综合 Brier 评分(IBS)评估模型性能。使用接收器工作特征(ROC)曲线、校准图和曲线下面积(AUC)评估预测 1 年、3 年和 5 年生存率的准确性。主要结局是 1 年、3 年和 5 年总生存率。使用 DeepSurv、NMTLR、RSF 和 Cox 比例风险回归建立模型。使用 C 指数评估模型区分度,使用一致性图进行校准,使用对数秩检验进行风险分层能力评估。
该研究纳入了 2197 名 HCC 患者,随机分为训练队列(70%,n=1537)和测试队列(30%,n=660)。两组患者的临床特征无统计学差异(p>0.05)。深度学习模型优于 RSF 和 CoxPH 模型,在测试数据集中的 C 指数分别为 0.735(NMTLR)和 0.731(DeepSurv)。NMTLR 模型在预测 1 年生存率方面表现出更好的准确性和良好的校准生存估计,AUC 为 0.824,预测 3 年生存率为 0.813,预测 5 年生存率为 0.803。该模型的校准和判别能力增强了其在原发性肝细胞癌临床预后中的实用性。我们将 NMTLR 模型作为一个网络应用程序用于临床实践。NMTLR 模型在预后评估和治疗建议方面可能具有优于传统线性模型的潜在优势。这种新的分析方法可为原发性肝癌患者的个体生存和治疗建议提供可靠信息。