Suppr超能文献

The in vitro effects of selected environmental toxicants on two heme synthesis enzymes.

作者信息

Johnson D J, Williams H L, Slater S, Haut M J, Altstatt L B

出版信息

J Environ Pathol Toxicol Oncol. 1985 Nov-Dec;6(2):211-8.

PMID:4078689
Abstract

Benzene and some of its substitution products become environmental toxicants due to improper disposal procedures. Benzene has been found to alter heme and globin synthesis in anucleate rabbit reticulocytes (Forte et al., 1976; Wildman et al., 1976) and based on these findings we felt it would be useful to determine what, if any, effect these derivatives would have on heme synthesis in vitro by studying their influence on delta-aminolevulinic acid synthetase (ALAS) and ferrochelatase (FC) activities in rat liver homogenates. ALAS was measured according to Ebert et al. (1970). FC was measured after Williams et al. (1980). Final concentrations of each added compound to the reaction mixture were 10(-3) to 10(-6) M. Normal values for rat liver ALAS were 250-350 nmol ALA/g protein/30 min, mean 290 +/- 40, and for FC were 12-40 mumol heme/g protein/45 min, mean 20 +/- 7. At 10(-3) M and lower concentrations these compounds inhibited ALAS and stimulated FC activities. Their effect on ALAS activity expressed as percentage of control of three analyses performed in triplicate +/- SEM was: o- and p-dinitrobenzenes-46 +/- 2; trinitrotoluenes-55 +/- 2; dinitrotoluenes-70 +/- 2; and amino-dinitrotoluenes-171 +/- 4. The stimulatory effect of these compounds expressed as percentage of control +/- SEM on FC was: dinitrotoluenes-171 +/- 3; dinitrobenzenes-152 +/- 3; trinitrotoluenes-142 +/- 4; and amino-dinitrotoluenes-130 +/- 4. Other classes of compounds tested did not significantly affect these enzymes at the same concentrations. These in vitro techniques may prove useful for predicting in vivo toxicologic effects of pollutants on species of interest.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验