Rezaei Zahra, Prince Elisabeth
Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo 200 University Avenue West Waterloo ON N2L 3G1 Canada
Chem Sci. 2025 Jul 25. doi: 10.1039/d5sc00516g.
The growing adoption of thermoset nanocomposites across industries has raised concerns about their environmental impact and end-of-life management. These advanced materials, which combine nanoscale fillers with permanently crosslinked matrices, pose unique recycling challenges due to their inherent durability and resistance to conventional mechanical recycling methods. This perspective examines prospective approaches for achieving circularity in thermoset nanocomposites, focusing on two main strategies: reprocessing and nanofiller recovery. We analyse recent developments in the use of covalently adaptable networks (CANs) as reprocessable matrices for nanocomposites. We also evaluate physical, thermal, and chemical methods for recovering valuable nanofillers from thermoset nanocomposite waste. While significant progress has been made in developing recyclable matrices and recovery techniques for conventional composites, additional research is needed to address challenges specific to nanomaterials, including preventing nanomaterial agglomeration and surface chemistry preservation. Moving forward, tailored approaches considering the unique characteristics of different nanofiller types will be crucial for establishing effective recycling protocols and advancing towards a circular economy for these high-performance materials.
热固性纳米复合材料在各行业的应用日益广泛,这引发了人们对其环境影响和生命周期末端管理的担忧。这些先进材料将纳米级填料与永久交联的基体相结合,由于其固有的耐久性以及对传统机械回收方法的抗性,给回收带来了独特的挑战。本文探讨了实现热固性纳米复合材料循环利用的潜在方法,重点关注两种主要策略:再加工和纳米填料回收。我们分析了将共价自适应网络(CANs)用作纳米复合材料可再加工基体的最新进展。我们还评估了从热固性纳米复合材料废料中回收有价值纳米填料的物理、热学和化学方法。虽然在开发传统复合材料的可回收基体和回收技术方面已取得显著进展,但仍需要进一步研究以应对纳米材料特有的挑战,包括防止纳米材料团聚和保持表面化学性质。展望未来,考虑不同纳米填料类型独特特性的定制方法对于建立有效的回收方案以及推动这些高性能材料迈向循环经济至关重要。