Suppr超能文献

用于成骨陶瓷精密3D生物打印的先进动态浆料循环系统:增强稳定性、优化机械性能及体外生物活性验证

Advanced Dynamic Slurry Circulation System for Precision 3D Bioprinting of Osteogenic Ceramics: Enhanced Stability, Mechanical Performance Optimization, and In Vitro Bioactivity Validation.

作者信息

He Jialin, Xie Mengli, Luo Siwei, Tang Geng, Zou Zihao, Teng Jianxiang, Zhao Baoping, Cui Dongbing, Zhou Tianqi, Yang Long, Ye Chuan

机构信息

Department of Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China.

School of Mechanical and Electrical Engineering, Guizhou Normal University, Guiyang 550025, China.

出版信息

ACS Omega. 2025 Jul 22;10(30):32895-32906. doi: 10.1021/acsomega.5c01819. eCollection 2025 Aug 5.

Abstract

This study presents an improved 3D printing technology that integrates a slurry circulation system (SCS) to optimize the quality of low-viscosity ceramic slurries and address the issue of slurry sedimentation during printing. The use of low-solid-content slurries, traditionally challenging due to sintering shrinkage, is a key feature of this work. The resin solvent completely burns off during sintering, while the remaining solid portion undergoes controlled shrinkage, enabling the production of high-precision ceramics with reduced demands on 3D printer accuracy. Although often avoided in ceramics, this shrinkage can help improve structural accuracy and reduce manufacturing costs. The efficacy of the SCS was validated through fluid dynamics simulations and sedimentation experiments using COMSOL Multiphysics software. The modified technology was used to fabricate bioceramics with various triply periodic minimal surface (TPMS) structures, which were characterized for porosity, pore size, and mechanical properties. In vitro cell experiments demonstrated that the fabricated ceramics had no adverse effects on the survival, proliferation, migration, or osteogenic differentiation of MC3T3-E1 cells, indicating good biocompatibility and osteogenic potential. The SCS significantly reduced slurry sedimentation, improved printing precision, and increased the yield of high-quality ceramics to 97.73%. The resulting bioceramics exhibited high porosity (∼70%) and small pore sizes (∼50 μm), with excellent mechanical properties (compressive strength of 4.00 ± 0.42 MPa and Young's modulus of 453.00 ± 7.43 MPa for the Gyroid structure). These findings suggest that low-solid-content slurries offer a cost-effective and high-precision solution for 3D-printed bioceramics with promising applications in bone tissue engineering.

摘要

本研究提出了一种改进的3D打印技术,该技术集成了浆料循环系统(SCS),以优化低粘度陶瓷浆料的质量,并解决打印过程中浆料沉降的问题。使用低固含量浆料是这项工作的一个关键特征,传统上由于烧结收缩,低固含量浆料具有挑战性。树脂溶剂在烧结过程中完全燃烧掉,而剩余的固体部分则经历可控收缩,从而能够生产对3D打印机精度要求较低的高精度陶瓷。尽管在陶瓷领域通常会避免这种收缩,但这种收缩有助于提高结构精度并降低制造成本。通过使用COMSOL Multiphysics软件进行流体动力学模拟和沉降实验,验证了SCS的有效性。采用改进后的技术制造了具有各种三重周期极小曲面(TPMS)结构的生物陶瓷,并对其孔隙率、孔径和力学性能进行了表征。体外细胞实验表明,所制备的陶瓷对MC3T3-E1细胞的存活、增殖、迁移或成骨分化没有不利影响,表明具有良好的生物相容性和成骨潜力。SCS显著减少了浆料沉降,提高了打印精度,并将高质量陶瓷的产量提高到了97.73%。所得生物陶瓷具有高孔隙率(约70%)和小孔径(约50μm),具有优异的力学性能(Gyroid结构的抗压强度为4.00±0.42MPa,杨氏模量为453.00±7.43MPa)。这些发现表明,低固含量浆料为3D打印生物陶瓷提供了一种经济高效且高精度的解决方案,在骨组织工程中具有广阔的应用前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/711a/12332543/8d58a929481f/ao5c01819_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验