Suppr超能文献

通过拓扑和应变诱导的四石墨烯变化实现带隙工程

Bandgap Engineering through Topological and Strain-Induced Changes in Tetragraphene.

作者信息

da Silva Brandão Wjefferson Henrique, Girão Eduardo Costa, Pereira Marcelo Lopes, Latgé Andrea

机构信息

Institute of Physics, Fluminense Federal University, Niterói, Rio de Janeiro 24210-340, Brazil.

Department of Physics, Federal University of Piauí, Teresina, Piauí 64049-550, Brazil.

出版信息

ACS Omega. 2025 Jul 24;10(30):33570-33582. doi: 10.1021/acsomega.5c04245. eCollection 2025 Aug 5.

Abstract

The ability to modulate electronic properties in low-dimensional carbon materials is fundamental to developing next-generation flexible electronics. In this work, we perform a comprehensive first-principles investigation of tetragraphene nanotubes (TGNTs), exploring the interplay between curvature-induced topology and uniaxial strain. Two chiral families are examined: zigzag-like (, 0) and armchair-like (0, ) configurations. Our results show that all TGNTs remain semiconducting upon rolling, with direct band gaps at the Γ point. We show that (, 0) TGNTs undergo a semiconductor-to-metal transition under strain, while preserving the sp-sp hybridization, a phenomenon not previously reported for this class of materials. The nanotubes exhibit high Young's modulus values and direction-dependent fracture patterns, with a strong correlation between structural anisotropy and mechanical performance. These findings reveal the potential of TGNTs as versatile platforms for strain-tunable optoelectronic applications and highlight the importance of topological and mechanical control in the engineering of functional nanocarbon systems.

摘要

在低维碳材料中调节电子特性的能力是开发下一代柔性电子器件的基础。在这项工作中,我们对四石墨烯纳米管(TGNTs)进行了全面的第一性原理研究,探索曲率诱导拓扑结构与单轴应变之间的相互作用。研究了两个手性家族:锯齿状(, 0)和扶手椅状(0, )构型。我们的结果表明,所有TGNTs在卷曲后仍保持半导体性质,在Γ点具有直接带隙。我们表明,(, 0)TGNTs在应变下会发生半导体到金属的转变,同时保留sp-sp杂化,这一现象此前在这类材料中尚未报道。纳米管表现出高杨氏模量值和方向依赖性断裂模式,结构各向异性与机械性能之间存在很强的相关性。这些发现揭示了TGNTs作为应变可调光电子应用通用平台的潜力,并突出了拓扑和机械控制在功能性纳米碳系统工程中的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验