拉普拉斯连续律估计器与M统计量。
Laplace's law of succession estimator and M-statistics.
作者信息
Demidenko Eugene
机构信息
Department of Biomedical Data Science and Mathematics Department.
出版信息
Am Stat. 2025 Aug;79(3):311-319. doi: 10.1080/00031305.2024.2448430. Epub 2025 Feb 25.
The classic formula for estimating the binomial probability as the proportion of successes contradicts common sense for extreme probabilities when the event never occurs or occurs every time. Laplace's law of succession estimator, one of the first applications of Bayesian statistics, has been around for over 250 years and resolves the paradoxes, although rarely discussed in modern statistics texts. This work aims to introduce a new theory for exact optimal statistical inference using Laplace's law of succession estimator as a motivating example. We prove that this estimator may be viewed from a different theoretical perspective as the limit point of the short confidence interval on the double-log scale when the confidence level approaches zero. This motivating example paves the road to the definition of an estimator as the inflection point on the cumulative distribution function as a function of the parameter given the observed statistic. This estimator has the maximum infinitesimal probability of the coverage of the unknown parameter and, therefore, is called the maximum concentration (MC) estimator as a part of a more general M-statistics theory. The new theory is illustrated with exact optimal confidence intervals for the normal standard deviation and the respective MC estimators.
将二项式概率估计为成功比例的经典公式,在事件从不发生或每次都发生这种极端概率情况下,与常识相悖。拉普拉斯连续律估计器作为贝叶斯统计的首批应用之一,已经存在了250多年,它解决了这些悖论,尽管在现代统计学教材中很少被讨论。这项工作旨在引入一种新理论,以拉普拉斯连续律估计器为一个启发性例子,用于精确最优统计推断。我们证明,当置信水平趋近于零时,这个估计器从不同的理论视角来看,可以被视为双对数尺度上短置信区间的极限点。这个启发性例子为将估计器定义为给定观测统计量时作为参数函数的累积分布函数的拐点铺平了道路。这个估计器对未知参数的覆盖具有最大的无穷小概率,因此,作为更一般的M统计理论的一部分,它被称为最大集中度(MC)估计器。新理论通过正态标准差的精确最优置信区间和相应的MC估计器进行了说明。
相似文献
Am Stat. 2025-8
2025-1
Cochrane Database Syst Rev. 2022-5-20
Cochrane Database Syst Rev. 2018-5-14
Health Technol Assess. 2025-7
Cochrane Database Syst Rev. 2021-4-19
本文引用的文献
PLoS One. 2017-3-7