Ketzetzi Stefania, Caprini Lorenzo, Willems Vivien, Alvarez Laura, Löwen Hartmut, Isa Lucio
Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, 8093 Zürich, Switzerland.
Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany.
ACS Nano. 2025 Aug 19;19(32):29430-29439. doi: 10.1021/acsnano.5c07142. Epub 2025 Aug 11.
Molecular machines and microorganisms employ dynamic shape changes to enable adaptive function. In contrast, active colloidal machines and micromotors, their synthetic counterparts, are typically preconfigured and mechanically rigid, which limits the range of their dynamic behavior and thereby their functionality. Here, through physical interactions alone, we assemble active colloidal molecules with flexible configurations that evolve freely and continuously in time. Unlike existing colloidal systems that either offer structural flexibility in passively diffusing assemblies, or impose fixed configurations in self-propelling ones, our colloidal molecules both dynamically self-assemble and disassemble on demand and directly propel themselves through their own internal restructuring. This, in turn, bestows enhanced self-regulation, self-steering, and avoiding capabilities upon encountering other molecules. These capabilities suppress clustering and motility-induced phase separation, allowing them to remain dispersed, well-separated, and still actively moving even at high concentrations. Micromotors with dynamic configurational freedom thus constitute a step toward autonomous motion beyond classical synthetic active matter, and allow for designing "intelligent" microrobots and responsive functional active materials at the nano- and microscale.
分子机器和微生物利用动态形状变化来实现适应性功能。相比之下,它们的合成对应物——活性胶体机器和微马达,通常是预先配置好的且机械刚性较强,这限制了它们动态行为的范围,进而限制了其功能。在此,仅通过物理相互作用,我们组装出了具有灵活构型的活性胶体分子,这些构型会随时间自由且持续地演变。与现有的胶体系统不同,现有系统要么在被动扩散组件中提供结构灵活性,要么在自推进组件中强加固定构型,而我们的胶体分子既能按需动态自组装和自拆卸,又能通过自身的内部重组直接自行推进。反过来,这赋予了它们在遇到其他分子时增强的自我调节、自我转向和规避能力。这些能力抑制了聚集和运动诱导的相分离,使它们即使在高浓度下也能保持分散、良好分离且仍在积极移动。因此,具有动态构型自由度的微马达向着超越传统合成活性物质的自主运动迈出了一步,并为在纳米和微米尺度上设计“智能”微型机器人和响应性功能活性材料提供了可能。