Suppr超能文献

无定形蛋白质区域的细胞功能的分子基础。

The molecular basis for cellular function of intrinsically disordered protein regions.

机构信息

Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA.

Center for Biomolecular Condensates, Washington University in St Louis, St Louis, MO, USA.

出版信息

Nat Rev Mol Cell Biol. 2024 Mar;25(3):187-211. doi: 10.1038/s41580-023-00673-0. Epub 2023 Nov 13.

Abstract

Intrinsically disordered protein regions exist in a collection of dynamic interconverting conformations that lack a stable 3D structure. These regions are structurally heterogeneous, ubiquitous and found across all kingdoms of life. Despite the absence of a defined 3D structure, disordered regions are essential for cellular processes ranging from transcriptional control and cell signalling to subcellular organization. Through their conformational malleability and adaptability, disordered regions extend the repertoire of macromolecular interactions and are readily tunable by their structural and chemical context, making them ideal responders to regulatory cues. Recent work has led to major advances in understanding the link between protein sequence and conformational behaviour in disordered regions, yet the link between sequence and molecular function is less well defined. Here we consider the biochemical and biophysical foundations that underlie how and why disordered regions can engage in productive cellular functions, provide examples of emerging concepts and discuss how protein disorder contributes to intracellular information processing and regulation of cellular function.

摘要

无规卷曲蛋白质区域存在于一系列动态的相互转换构象中,缺乏稳定的 3D 结构。这些区域结构上具有异质性、普遍性,存在于所有生命领域。尽管缺乏明确的 3D 结构,但无序区域对于从转录控制和细胞信号传导到亚细胞组织等细胞过程是必不可少的。通过其构象的可变性和适应性,无序区域扩展了大分子相互作用的范围,并可通过其结构和化学环境进行轻松调节,使其成为对调节信号的理想响应者。最近的工作在理解蛋白质序列与无序区域构象行为之间的联系方面取得了重大进展,但序列与分子功能之间的联系还不太明确。在这里,我们考虑了无序区域能够进行富有成效的细胞功能的生化和生物物理基础,提供了一些新兴概念的示例,并讨论了蛋白质无序性如何有助于细胞内信息处理和细胞功能的调节。

相似文献

1
The molecular basis for cellular function of intrinsically disordered protein regions.
Nat Rev Mol Cell Biol. 2024 Mar;25(3):187-211. doi: 10.1038/s41580-023-00673-0. Epub 2023 Nov 13.
2
Intrinsically disordered regions are poised to act as sensors of cellular chemistry.
Trends Biochem Sci. 2023 Dec;48(12):1019-1034. doi: 10.1016/j.tibs.2023.08.001. Epub 2023 Aug 31.
3
Predicting Conformational Ensembles of Intrinsically Disordered Proteins: From Molecular Dynamics to Machine Learning.
J Phys Chem Lett. 2024 Aug 15;15(32):8177-8186. doi: 10.1021/acs.jpclett.4c01544. Epub 2024 Aug 2.
4
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
5
Functional unfoldomics: Roles of intrinsic disorder in protein (multi)functionality.
Adv Protein Chem Struct Biol. 2024;138:179-210. doi: 10.1016/bs.apcsb.2023.11.001. Epub 2023 Nov 22.
6
Quantifying Protein Disorder through Measures of Excess Conformational Entropy.
J Phys Chem B. 2016 May 19;120(19):4341-50. doi: 10.1021/acs.jpcb.6b00658. Epub 2016 May 4.
8
Disordered regions tune order in chromatin organization and function.
Biophys Chem. 2022 Feb;281:106716. doi: 10.1016/j.bpc.2021.106716. Epub 2021 Nov 17.
9
Predicting Protein Conformational Disorder and Disordered Binding Sites.
Methods Mol Biol. 2022;2449:95-147. doi: 10.1007/978-1-0716-2095-3_4.
10
Intrinsically disordered proteins in crowded milieu: when chaos prevails within the cellular gumbo.
Cell Mol Life Sci. 2018 Nov;75(21):3907-3929. doi: 10.1007/s00018-018-2894-9. Epub 2018 Jul 31.

引用本文的文献

3
Mutual Antagonism Between PRC1 Condensates and SWI/SNF in Chromatin Regulation.
bioRxiv. 2025 Aug 26:2025.08.25.672128. doi: 10.1101/2025.08.25.672128.
9
Active Colloidal Molecules with Dynamic Configurational Freedom.
ACS Nano. 2025 Aug 19;19(32):29430-29439. doi: 10.1021/acsnano.5c07142. Epub 2025 Aug 11.
10
Structural and Functional Relevance of Charge-Based Transient Interactions inside Intrinsically Disordered Proteins.
ACS Phys Chem Au. 2025 Apr 15;5(4):356-366. doi: 10.1021/acsphyschemau.5c00005. eCollection 2025 Jul 23.

本文引用的文献

1
Expanding the molecular language of protein liquid-liquid phase separation.
Nat Chem. 2024 Jul;16(7):1113-1124. doi: 10.1038/s41557-024-01489-x. Epub 2024 Mar 29.
2
DNA binding redistributes activation domain ensemble and accessibility in pioneer factor Sox2.
Nat Commun. 2024 Feb 16;15(1):1445. doi: 10.1038/s41467-024-45847-2.
4
Direct prediction of intrinsically disordered protein conformational properties from sequence.
Nat Methods. 2024 Mar;21(3):465-476. doi: 10.1038/s41592-023-02159-5. Epub 2024 Jan 31.
5
Checkpoint activation by Spd1: a competition-based system relying on tandem disordered PCNA binding motifs.
Nucleic Acids Res. 2024 Feb 28;52(4):2030-2044. doi: 10.1093/nar/gkae011.
6
Structural biases in disordered proteins are prevalent in the cell.
Nat Struct Mol Biol. 2024 Feb;31(2):283-292. doi: 10.1038/s41594-023-01148-8. Epub 2024 Jan 4.
7
The disordered N-terminal tail of SARS-CoV-2 Nucleocapsid protein forms a dynamic complex with RNA.
Nucleic Acids Res. 2024 Mar 21;52(5):2609-2624. doi: 10.1093/nar/gkad1215.
8
Conformational entropy in molecular recognition of intrinsically disordered proteins.
Curr Opin Struct Biol. 2023 Dec;83:102697. doi: 10.1016/j.sbi.2023.102697. Epub 2023 Sep 14.
9
Intrinsically disordered regions are poised to act as sensors of cellular chemistry.
Trends Biochem Sci. 2023 Dec;48(12):1019-1034. doi: 10.1016/j.tibs.2023.08.001. Epub 2023 Aug 31.
10
Intrinsically Disordered Flanking Regions Increase the Affinity of a Transcriptional Coactivator Interaction across Vertebrates.
Biochemistry. 2023 Sep 19;62(18):2710-2716. doi: 10.1021/acs.biochem.3c00285. Epub 2023 Aug 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验