Suppr超能文献

一种具有动态分配神经元和突触功能的简易光子学可重构忆阻器。

A facile photonics reconfigurable memristor with dynamically allocated neurons and synapses functions.

作者信息

Zhou Zhenyu, Wang Lulu, Liu Gongjie, Li Yuchen, Guan Zhiyuan, Zhang Zixuan, Li Pengfei, Pei Yifei, Zhao Jianhui, Sun Jiameng, Wang Yahong, Shao Yiduo, Yan Xiaobing

机构信息

Key Laboratory of Brain-Like Neuromorphic Devices and Systems of Hebei Province, College of Electron and Information Engineering, School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China.

School of Electronic Science and Engineering, Xiamen University, Xiamen, 361005, China.

出版信息

Light Sci Appl. 2025 Aug 12;14(1):269. doi: 10.1038/s41377-025-01928-5.

Abstract

The dynamic neural network function realized by reconfigurable memristors to implement artificial neurons and synapses is an effective method to complete the next generation of neuromorphic computing. However, due to the limitation of reconfiguration conditions, there are inconsistencies in the turn-on voltage and operating current before and after the reconfiguration of neuromorphic devices, which leads to huge difficulties in hardware application development and is an urgent problem to be solved. In this work, we introduced light as a regulatory means in the memristor and achieved the reconfiguration of volatile (endurance ~10 cycles) and non-volatile (retention ~10 s) characteristics with a unified working parameter through the photoelectric coupling mode. The switching voltage of the device can be controlled 100% by this method without any limiting current. This will allow neurons and synapses to be dynamically allocated on demand. We completed the verification such as Morse code decoding, Poisson coded image recognition, denoising in the image recognition process, and intelligent traffic signal recognition hardware system under different work modes. It is verified that the device can dynamically adjust the neuromorphic according to needs, providing a new idea for the further integration of neuromorphic computing in the future.

摘要

通过可重构忆阻器实现人工神经元和突触以实现动态神经网络功能是完成下一代神经形态计算的有效方法。然而,由于重构条件的限制,神经形态器件重构前后的开启电压和工作电流存在不一致性,这给硬件应用开发带来了巨大困难,是亟待解决的问题。在这项工作中,我们在忆阻器中引入光作为调节手段,通过光电耦合模式以统一的工作参数实现了易失性(耐久性约10个循环)和非易失性(保持时间约10秒)特性的重构。该方法可100%控制器件的开关电压,且无需任何限流。这将使神经元和突触能够按需动态分配。我们完成了莫尔斯码解码、泊松编码图像识别、图像识别过程中的去噪以及不同工作模式下的智能交通信号识别硬件系统等验证。结果表明,该器件能够根据需要动态调整神经形态,为未来神经形态计算的进一步集成提供了新思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dab5/12340011/0e94bdf83e13/41377_2025_1928_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验