Xu Sihan, Dang Zhaohui
School of Astronautics, Northwestern Polytechnical University, Xi'an, 710072, China.
National Key Laboratory of Aerospace Flight Dynamics, Northwestern Polytechnical University, Xi'an, 710072, China.
Sci Rep. 2025 Aug 11;15(1):29376. doi: 10.1038/s41598-025-15057-x.
This study investigates emergent behaviors in multi-agent pursuit-evasion games within a bounded 2D grid world, where both pursuers and evaders employ multi-agent reinforcement learning (MARL) algorithms to develop adaptive strategies. We define six fundamental pursuit actions-flank, engage, ambush, drive, chase, and intercept-which combine to form 21 types of composite actions during two-pursuer coordination. After training with MARL algorithms, pursuers achieved a 99.9% success rate in 1,000 randomized pursuit-evasion trials, demonstrating the effectiveness of the learned strategies. To systematically identify and measure emergent behaviors, we propose a K-means-based clustering methodology that analyzes the trajectory evolution of both pursuers and evaders. By treating the full set of game trajectories as statistical samples, this approach enables the detection of distinct behavioral patterns and cooperative strategies. Through analysis, we uncover emergent behaviors such as lazy pursuit, where one pursuer minimizes effort while complementing the other's actions, and serpentine movement, characterized by alternating drive and intercept actions. We identify four key cooperative pursuit strategies, statistically analyzing their occurrence frequency and corresponding trajectory characteristics: serpentine corner encirclement, stepwise corner approach, same-side edge confinement, and pincer flank attack. These findings provide significant insights into the mechanisms of behavioral emergence and the optimization of cooperative strategies in multi-agent games.
本研究调查了在有界二维网格世界中的多智能体追逃游戏中的涌现行为,其中追捕者和逃避者都采用多智能体强化学习(MARL)算法来制定自适应策略。我们定义了六种基本的追捕行动——侧翼包抄、交战、伏击、驱赶、追逐和拦截——在两个追捕者协同过程中,这些行动组合形成了21种复合行动类型。在使用MARL算法进行训练后,追捕者在1000次随机追逃试验中成功率达到了99.9%,证明了所学习策略的有效性。为了系统地识别和测量涌现行为,我们提出了一种基于K均值的聚类方法,该方法分析追捕者和逃避者的轨迹演变。通过将完整的游戏轨迹集视为统计样本,这种方法能够检测出不同的行为模式和合作策略。通过分析,我们发现了诸如懒惰追捕(其中一个追捕者在补充另一个追捕者行动的同时尽量减少自身努力)和蛇形移动(其特征是交替进行驱赶和拦截行动)等涌现行为。我们识别出四种关键的合作追捕策略,并对它们的出现频率和相应的轨迹特征进行了统计分析:蛇形角落包围、逐步角落逼近、同侧边缘限制和钳形侧翼攻击。这些发现为多智能体游戏中行为涌现的机制以及合作策略的优化提供了重要见解。