Suppr超能文献

MANIT:一种使用生物特征和历史特征进行在线考试监考的多层人工神经网络集成框架。

MANIT: a multilayer ANN integrated framework using biometrics and historical features for online examination proctoring.

作者信息

Malhotra Manit, Chhabra Indu

机构信息

Department of Computer Science & Applications, Panjab University, Chandigarh, India.

出版信息

Sci Rep. 2025 Aug 11;15(1):29302. doi: 10.1038/s41598-025-15486-8.

Abstract

Online education has become a globally accepted norm, bringing benefits and challenges. One of the most debated aspects is the academic integrity of online examinations. Without physical proctoring, the authenticity of the candidates' scores can always be called into question. This paper proposed an innovative Multilayer ANN Integrated (MANIT) framework for Artificial Neural Network (ANN)-assisted automatic online proctoring using the combination of biometrics and historical features. It tracks facial orientation and eye movement using 468 landmarks. Empirically designed angular variation-based thresholds associated with a regression model developed with a 3-layer Deep Artificial Neural Network have made the proposed MANIT framework a reliable automatic online examination proctoring system. The Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE) of the ANN are 1.58, 3.96, and 1.99, respectively. The overall system detects the five levels of dishonesty in online examinations with 88.6% accuracy. The precision, recall, and F1 score are 90.2%, 90.8%, and 90.4%, respectively. The innovative design, cross-validation-based reliability, and outstanding performance of the MANIT framework have made it an excellent proctoring system to ensure academic integrity in online examinations.

摘要

在线教育已成为全球公认的规范,带来了益处和挑战。最具争议的方面之一是在线考试的学术诚信。在没有现场监考的情况下,考生成绩的真实性总是会受到质疑。本文提出了一种创新的多层人工神经网络集成(MANIT)框架,用于利用生物特征和历史特征的组合,实现人工神经网络(ANN)辅助的自动在线监考。它使用468个地标点来跟踪面部朝向和眼球运动。基于经验设计的与三层深度人工神经网络开发的回归模型相关的基于角度变化的阈值,使所提出的MANIT框架成为一个可靠的自动在线考试监考系统。人工神经网络的平均绝对误差(MAE)、均方误差(MSE)和均方根误差(RMSE)分别为1.58、3.96和1.99。整个系统以88.6%的准确率检测在线考试中的五个不诚实级别。精确率、召回率和F1分数分别为90.2%、90.8%和90.4%。MANIT框架的创新设计、基于交叉验证的可靠性和出色性能,使其成为确保在线考试学术诚信的优秀监考系统。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验