Ahlers Jannis N, Amico Lorenzo D, Bast Henriette, Costello Lucy F, Donnelley Martin, Alloo Samantha J, Harker Stephanie A, How Ying Ying, Croughan Michelle K, Pollock James A, Häusermann Daniel, Maksimenko Anton, Hall Christopher, Gureyev Timur E, Nesterets Yakov I, Kitchen Marcus J, Pavlov Konstantin M, Morgan Kaye S
School of Physics and Astronomy, Monash University, 3800, Clayton, VIC, Australia.
Elettra-Sincrotrone Trieste S.C.p.A., Trieste, Italy.
Sci Rep. 2025 Aug 11;15(1):29314. doi: 10.1038/s41598-025-14956-3.
Propagation-based phase-contrast X-ray imaging is a promising technique for in vivo medical imaging, offering lower radiation doses than traditional attenuation-based imaging. Previous studies have focused on X-ray energies below 50keV for small-animal imaging and mammography. Here, we investigate the feasibility of high-energy propagation-based computed tomography for human adult-scale lung imaging at the Australian Synchrotron's Imaging and Medical Beamline. This facility is uniquely positioned for human lung imaging, offering a large field of view, high X-ray energies, and supporting clinical infrastructure. We imaged an anthropomorphic chest phantom (LungMan) between 50keV and 80keV across the range of possible sample-to-detector distances, with a photon-counting and an integrating detector. Strong phase-contrast fringes were observed with the photon-counting detector, even at high X-ray energies and a large pixel size relative to previous work, whereas the integrating detector with lower spatial resolution showed no clear phase effects. Measured X-ray phase-shifting properties of LungMan aligned well with reference soft tissue values, validating the phantom for phase-contrast studies. Imaging quality assessments suggest an optimal configuration at approximately 70keV and the longest available propagation distance of 7.5m, indicating potential benefit in positioning the patient in an upstream hutch. This study represents the first step towards clinical adult lung imaging at the Australian Synchrotron.
基于传播的相衬X射线成像技术是一种很有前景的活体医学成像技术,与传统的基于衰减的成像相比,它的辐射剂量更低。以往的研究主要集中在低于50keV的X射线能量用于小动物成像和乳腺摄影。在这里,我们在澳大利亚同步加速器的成像和医学光束线研究了高能基于传播的计算机断层扫描用于成人规模肺部成像的可行性。该设施在人体肺部成像方面具有独特的优势,提供大视野、高X射线能量,并支持临床基础设施。我们使用光子计数探测器和积分探测器,在50keV至80keV之间,对不同的样品到探测器距离范围内的拟人化胸部模型(LungMan)进行成像。即使在高X射线能量和相对于以往工作较大的像素尺寸下,使用光子计数探测器也观察到了强烈的相衬条纹,而空间分辨率较低的积分探测器则没有显示出明显的相位效应。测量的LungMan的X射线相移特性与参考软组织值吻合良好,验证了该模型用于相衬研究的有效性。成像质量评估表明,在约70keV和最长可用传播距离7.5m的情况下配置最佳,这表明将患者安置在上游小室可能有益。这项研究是在澳大利亚同步加速器进行临床成人肺部成像的第一步。