Li Rui, Chen Qiyong, Zhang Hao, Wang Zhiteng, Zhou Tianxiang, Feng Xiaolong, Du Yachao, Zhang Junqi, Xi Lili, Tian Qingwen, Liu Shengzhong Frank
Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P.R. China.
Materials Genome Institute, Shanghai University, Shanghai, 200444, P.R. China.
Angew Chem Int Ed Engl. 2025 Aug 12:e202510925. doi: 10.1002/anie.202510925.
Rational molecular design at the perovskite/hole transport layer (HTL) interface presents a viable strategy to suppress nonradiative recombination in CsPbIBr-based perovskite solar cells (PSCs). However, simultaneously achieving efficient defect passivation and rapid charge extraction with a single molecular modifier remains challenging. Herein, we employ a planar conjugated molecule, 1,8-naphthyridin-2-amine (2-NA), as a multifunctional interfacial modifier that concurrently enhances charge extraction and suppresses interfacial recombination in CsPbIBr PSCs. Combined density functional theory (DFT) calculations and experimental analyses reveal that 2-NA forms a dense protective layer via noncovalent interactions (e.g., π-π stacking and hydrogen bonding), effectively passivating undercoordinated Pb while inhibiting ion migration. Remarkably, 2-NA incorporation facilitates hot-carrier extraction, reducing the carrier cooling time from 515 to 240 fs and quadrupling the carrier diffusion length, thereby improving charge transport. As a result, the optimized device achieves a power conversion efficiency (PCE) of 22.49%, the highest reported value for this class of PSCs to date. Furthermore, the device retains 93.6% of its initial PCE after 1008 h under ambient conditions, demonstrating exceptional stability. This work offers a promising molecular engineering approach for enhancing the performance and durability of inorganic PSCs through interfacial modification.
在钙钛矿/空穴传输层(HTL)界面进行合理的分子设计是抑制基于CsPbIBr的钙钛矿太阳能电池(PSC)中非辐射复合的可行策略。然而,用单一分子改性剂同时实现高效的缺陷钝化和快速的电荷提取仍然具有挑战性。在此,我们采用平面共轭分子1,8-萘啶-2-胺(2-NA)作为多功能界面改性剂,它能同时增强CsPbIBr PSCs中的电荷提取并抑制界面复合。结合密度泛函理论(DFT)计算和实验分析表明,2-NA通过非共价相互作用(如π-π堆积和氢键)形成致密的保护层,有效钝化低配位的Pb,同时抑制离子迁移。值得注意的是,掺入2-NA有助于热载流子提取,将载流子冷却时间从515 fs减少到240 fs,并使载流子扩散长度增加四倍,从而改善电荷传输。结果,优化后的器件实现了22.49%的功率转换效率(PCE),这是迄今为止此类PSC报道的最高值。此外,该器件在环境条件下1008小时后仍保留其初始PCE的93.6%,显示出优异的稳定性。这项工作为通过界面改性提高无机PSC的性能和耐久性提供了一种有前景的分子工程方法。