Wang Xinling, Liu Li, Pang Rong, Li Sisi, Dong Suting
Department of Obstetrical, Hebei Province People's Hospital, 050000 Shijiazhuang, Hebei, China.
Department of Ophthalmology of Traditional Chinese Medicine, Hebei Province People's Hospital, 050000 Shijiazhuang, Hebei, China.
Actas Esp Psiquiatr. 2025 Aug;53(4):658-668. doi: 10.62641/aep.v53i4.1834.
Currently, the factors impacting postpartum post-traumatic stress disorder (PP-PTSD) remain unclear. Therefore, this study aimed to screen the PP-PTSD risk factors and to develop an effective and user-friendly column chart prediction model (nomogram), thereby providing a basis for early clinical diagnosis and prompt intervention.
This retrospective study collected 180 postpartum women between January 2023 and December 2023. Based on the occurrence of PP-PTSD, study participants were divided into two groups: a control group (No-PP-PTSD) and an observation group (PP-PTSD). The logistic regression analysis were used to identify independent risk factors for this condition, and nomogram models were developed by incorporating these items. Furthermore, we applied the calibration plots, decision curve analysis (DCA), and receiver operating characteristic (ROC) curve to assess the predictive performance of the nomogram.
Multivariable logistic regression analysis identified working condition (p = 0.008), relationship with the second primary caregiver of the child (p < 0.001), type of pregnancy (p < 0.001), pregnancy mode (p < 0.001), newborns sent to the ICU (p < 0.001), postpartum anxiety (p = 0.002), and plan pregnancy (p = 0.001) as independent risk factors for PP-PTSD.
We developed a user-friendly and scientifically robust nomogram model for predicting PP-PTSD risk in postpartum women. This predicting tool has the potential to assist clinicians in making informed decisions concerning PP-PTSD among postpartum women.
目前,影响产后创伤后应激障碍(PP-PTSD)的因素尚不清楚。因此,本研究旨在筛选PP-PTSD的危险因素,并开发一种有效且用户友好的柱状图预测模型(列线图),从而为临床早期诊断和及时干预提供依据。
本回顾性研究收集了2023年1月至2023年12月期间的180名产后女性。根据PP-PTSD的发生情况,研究参与者被分为两组:对照组(无PP-PTSD)和观察组(PP-PTSD)。采用逻辑回归分析确定该疾病的独立危险因素,并通过纳入这些因素建立列线图模型。此外,我们应用校准图、决策曲线分析(DCA)和受试者工作特征(ROC)曲线来评估列线图的预测性能。
多变量逻辑回归分析确定工作状况(p = 0.008)、与孩子第二主要照顾者的关系(p < 0.001)、妊娠类型(p < 0.001)、妊娠方式(p < 0.001)、新生儿入住重症监护病房(p < 0.001)、产后焦虑(p = 0.002)和计划妊娠(p = 0.001)为PP-PTSD的独立危险因素。
我们开发了一种用户友好且科学可靠的列线图模型,用于预测产后女性的PP-PTSD风险。这种预测工具有可能帮助临床医生对产后女性的PP-PTSD做出明智的决策。