Stang Andreas, Schäfer Henning, Idrissi-Yaghir Ahmad, Friedrich Christoph M, Fox Matthew P
Institute for Medical Informatics, Biometry, and Epidemiology (IMIBE), University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany.
School of Public Health, Department of Epidemiology, Boston University, 715 Albany Street, Boston, MA 02118, USA.
Glob Epidemiol. 2025 Jul 25;10:100213. doi: 10.1016/j.gloepi.2025.100213. eCollection 2025 Dec.
With the emergence of HIV/AIDS journals, the development of the reporting of statistical inference and effect measures in published abstracts can be examined from the beginning in a new field. The aim of this study was to describe time trends of statistical inference and effect measure reporting of major HIV/AIDS journals.
We included 10 major HIV/AIDS journals and analyzed all available PubMed entries for the period 1987 through 2022. We applied rule-based text mining and machine learning methodology to detect the presence of confidence intervals, numerical -values or comparisons of p-values with thresholds, language describing statistical significance, and effect measures for dichotomous outcomes.
Among 41,730 PubMed entries from the major HIV/AIDS journals, 31,665 contained an abstract. In the early years, most abstracts reporting statistical inference contained only significance terminology without confidence intervals and -values. From 1988 to 2005, each year 30 % of all abstracts contained p-values without confidence intervals. Thereafter, this reporting style continued to decline. The reporting of confidence intervals increased steadily from 1988 (11 %) to 2022 (56 %). Of the 17 % of abstracts in 2017-2022 that included any effect measure, half reported odds ratios (51 %), followed by hazard ratios (28 %) and risk ratios (16 %). Difference measures and number needed to treat or harm were very uncommon.
Within the HIV/AIDS literature, there has been widespread use of confidence intervals. Most of the journals that we reviewed had a decrease in reporting only statistical significance without confidence intervals over time.
随着艾滋病相关期刊的出现,可以在一个新领域从一开始就研究已发表摘要中统计推断和效应量报告的发展情况。本研究的目的是描述主要艾滋病期刊统计推断和效应量报告的时间趋势。
我们纳入了10种主要的艾滋病期刊,并分析了1987年至2022年期间所有可获取的PubMed条目。我们应用基于规则的文本挖掘和机器学习方法来检测置信区间、数值或p值与阈值的比较、描述统计学显著性的语言以及二分结果的效应量。
在主要艾滋病期刊的41,730条PubMed条目中,31,665条包含摘要。在早期,大多数报告统计推断的摘要仅包含显著性术语,没有置信区间和p值。从1988年到2005年,每年所有摘要中有30%包含无置信区间的p值。此后,这种报告方式持续减少。置信区间的报告从1988年的11%稳步增加到2022年的56%。在2017 - 2022年包含任何效应量的17%的摘要中,一半报告了比值比(51%),其次是风险比(28%)和危险比(16%)。差异量以及治疗或伤害所需的数量非常少见。
在艾滋病相关文献中,置信区间已被广泛使用。我们审查的大多数期刊随着时间推移,仅报告统计学显著性而无置信区间的情况有所减少。