Suppr超能文献

特邀评论:方法论中认知科学的必要性。

Invited Commentary: The Need for Cognitive Science in Methodology.

作者信息

Greenland Sander

机构信息

Department of Epidemiology, School of Public Health, University of California, Los Angeles, CA.

出版信息

Am J Epidemiol. 2017 Sep 15;186(6):639-645. doi: 10.1093/aje/kwx259.

Abstract

There is no complete solution for the problem of abuse of statistics, but methodological training needs to cover cognitive biases and other psychosocial factors affecting inferences. The present paper discusses 3 common cognitive distortions: 1) dichotomania, the compulsion to perceive quantities as dichotomous even when dichotomization is unnecessary and misleading, as in inferences based on whether a P value is "statistically significant"; 2) nullism, the tendency to privilege the hypothesis of no difference or no effect when there is no scientific basis for doing so, as when testing only the null hypothesis; and 3) statistical reification, treating hypothetical data distributions and statistical models as if they reflect known physical laws rather than speculative assumptions for thought experiments. As commonly misused, null-hypothesis significance testing combines these cognitive problems to produce highly distorted interpretation and reporting of study results. Interval estimation has so far proven to be an inadequate solution because it involves dichotomization, an avenue for nullism. Sensitivity and bias analyses have been proposed to address reproducibility problems (Am J Epidemiol. 2017;186(6):646-647); these methods can indeed address reification, but they can also introduce new distortions via misleading specifications for bias parameters. P values can be reframed to lessen distortions by presenting them without reference to a cutoff, providing them for relevant alternatives to the null, and recognizing their dependence on all assumptions used in their computation; they nonetheless require rescaling for measuring evidence. I conclude that methodological development and training should go beyond coverage of mechanistic biases (e.g., confounding, selection bias, measurement error) to cover distortions of conclusions produced by statistical methods and psychosocial forces.

摘要

对于统计数据滥用问题,目前尚无完整的解决方案,但方法学培训需要涵盖影响推断的认知偏差和其他社会心理因素。本文讨论了3种常见的认知扭曲:1)二分法癖,即即使二分法既无必要又具误导性,仍强迫将数量视为二分的倾向,如基于P值是否“具有统计学显著性”进行推断时;2)虚无主义,即在没有科学依据的情况下,倾向于优先考虑无差异或无效应的假设,如仅检验零假设时;3)统计具体化,将假设的数据分布和统计模型当作反映已知物理定律,而非思想实验的推测性假设来对待。如通常被滥用的那样,零假设显著性检验将这些认知问题结合起来,导致对研究结果的解释和报告严重扭曲。到目前为止,区间估计已被证明是一个不充分的解决方案,因为它涉及二分法,这是虚无主义的一条途径。有人提出敏感性和偏差分析来解决可重复性问题(《美国流行病学杂志》。2017;186(6):646 - 647);这些方法确实可以解决具体化问题,但它们也可能通过对偏差参数的误导性设定引入新的扭曲。P值可以重新构建,通过不参照临界值呈现它们、为零假设的相关备择假设提供P值以及认识到它们对计算中使用的所有假设的依赖性来减少扭曲;尽管如此,它们仍需要重新标度以衡量证据。我的结论是,方法学的发展和培训应超越对机械性偏差(如混杂、选择偏差、测量误差)的涵盖,以涵盖统计方法和社会心理力量对结论造成的扭曲。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验