Ponasso Guillermo Nuñez, Drumm Derek A, Oppermann Hannes, Wang Abbie, Noetscher Gregory M, Maess Burkhard, Knösche Thomas R, Makaroff Sergey N, Haueisen Jens
Dept. of Electrical & Computer Engineering, Worcester Polytechnic Institute, Worcester, MA, USA.
Graduate School of Information Sciences, Division of Mathematics, Tohoku University, Sendai, Miyagi, Japan.
bioRxiv. 2025 Jul 16:2025.07.11.664246. doi: 10.1101/2025.07.11.664246.
Modern automated human head segmentations can generate high-resolution computational meshes involving many non-nested tissues. However, most source reconstruction software is limited to 3 -4 nested layers of low resolution and a small number of dipolar sources ~10,000. Recently, we introduced modeling techniques for source reconstruction of magnetoencephalographic (MEG) signals using the reciprocal approach and the boundary element fast multipole method (BEM-FMM). The technique of BEM-FMM can process both nested and non-nested models with as many as 4 million surface elements. In this paper, we present an analogue technique for source reconstruction of electroencephalographic (EEG) signals based on cortical global basis functions. The present work uses Helmholtz reciprocity to relate the reciprocally-generated lead-field matrices to their direct counterpart, while resolving the issue of possible biases toward the reference electrode. Our methodology is tested with experimental EEG data collected from a cohort of 12, young and healthy, volunteers subjected to intermittent photic stimulation (IPS). Our novel high-resolution source reconstruction models can have impact on mental health screening as well as brain-computer interfaces.
现代自动化人体头部分割技术能够生成包含许多非嵌套组织的高分辨率计算网格。然而,大多数源重建软件仅限于3 - 4层低分辨率的嵌套层以及少量(约10000个)偶极源。最近,我们引入了使用互易方法和边界元快速多极子方法(BEM-FMM)进行脑磁图(MEG)信号源重建的建模技术。BEM-FMM技术可以处理具有多达400万个表面元素的嵌套和非嵌套模型。在本文中,我们提出了一种基于皮质全局基函数的脑电图(EEG)信号源重建的类似技术。目前的工作利用亥姆霍兹互易性将互易生成的导联场矩阵与其直接对应矩阵联系起来,同时解决了可能偏向参考电极的问题。我们的方法通过从12名年轻健康志愿者队列中收集的实验性EEG数据进行测试,这些志愿者接受了间歇性光刺激(IPS)。我们新颖的高分辨率源重建模型可能会对心理健康筛查以及脑机接口产生影响。