Suppr超能文献

使用互易边界元法-快速多极子方法改进听觉诱发电位场的源定位

Improved Source Localization of Auditory Evoked Fields using Reciprocal BEM-FMM.

作者信息

Drumm Derek A, Ponasso Guillermo Nuñez, Linke Alexander, Noetscher Gregory M, Maess Burkhard, Knösche Thomas R, Haueisen Jens, Lewine Jeffrey David, Abbott Christopher C, Makaroff Sergey N, Deng Zhi-De

机构信息

Dept. of Electrical & Computer Engineering, Worcester Polytechnic Institute, Worcester, MA, USA.

Graduate School of Information Sciences, Division of Mathematics, Tohoku University, Sendai, Miyagi, Japan.

出版信息

bioRxiv. 2025 May 14:2025.05.09.653081. doi: 10.1101/2025.05.09.653081.

Abstract

We apply our recently introduced technique of reciprocal magnetoencephalographic (MEG) source estimation via the boundary element fast multipole method (reciprocal BEM-FMM) to localize auditory evoked fields (AEFs). We compare our results with the source estimates of MNE-Python against simulated N1m components of AEFs, as well as experimental data for a cohort of 7 participants subjected to binaural auditory stimulation. Previous comparisons of reciprocal BEM-FMM with MNE focused on evoked somatosensory fields, which produced results of similar quality. In this work we show that the localization of AEFs using high-resolution reciprocal BEM-FMM is significantly better in terms of accuracy and focality than those estimates of the low resolution 3-layer BEM of MNE. Our findings suggest that the use of high-resolution models plays a significant role in the quality of source estimates and that these may provide improvements in a wide range of applications.

摘要

我们应用最近引入的通过边界元快速多极子方法(互易边界元快速多极子法)进行互易脑磁图(MEG)源估计的技术来定位听觉诱发电场(AEF)。我们将我们的结果与MNE-Python的源估计结果进行比较,对比AEF模拟的N1m成分以及7名接受双耳听觉刺激的参与者的实验数据。之前互易边界元快速多极子法与MNE的比较集中在诱发体感场,其产生了质量相似的结果。在这项工作中,我们表明,使用高分辨率互易边界元快速多极子法对AEF进行定位在准确性和聚焦性方面明显优于MNE低分辨率三层边界元的估计结果。我们的研究结果表明,高分辨率模型的使用在源估计质量中起着重要作用,并且这些模型可能在广泛的应用中带来改进。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ae/12261895/bca63ed8e197/nihpp-2025.05.09.653081v2-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验