Suppr超能文献

二重奏模型统一了关于预测编码的各种神经科学实验结果。

Duet model unifies diverse neuroscience experimental findings on predictive coding.

作者信息

Meng John H, Ross Jordan M, Hamm Jordan P, Wang Xiao-Jing

出版信息

bioRxiv. 2025 Aug 19:2025.07.12.664417. doi: 10.1101/2025.07.12.664417.

Abstract

The brain continuously generates predictions about the external world. When stimulus X is presented repeatedly, the brain predicts that the next one is also X. A deviant stimulus Y elicits a stronger sensory response than the baseline, reflecting the amplification of an unexpected stimulus. Here, we introduce the duet predictive coding model, a minimal and biologically plausible framework in which neurons encode both positive and negative prediction errors. This model reproduces neural responses observed in vision and audition across diverse predictive coding paradigms, particularly omission. Our proposed circuit mechanism predicts (1) neurons tuned to negative prediction errors in the oddball paradigm, supported by experimental evidence in mice; (2) the magnitude of unexpected responses quantitatively depends on the dissimilarity between standard and deviant stimuli and diminishes with increasing interstimulus interval. Our findings suggest that the brain's deviance detection relies on dual-error computation, offering a unifying explanation across seemingly disparate experimental protocols.

摘要

大脑持续对外部世界进行预测。当刺激X反复呈现时,大脑预测下一个也是X。异常刺激Y会引发比基线更强的感觉反应,这反映了意外刺激的放大。在此,我们引入了二重奏预测编码模型,这是一个最小且具有生物学合理性的框架,其中神经元对正向和负向预测误差都进行编码。该模型再现了在各种预测编码范式(特别是遗漏范式)中视觉和听觉方面观察到的神经反应。我们提出的电路机制预测:(1)在奇偶数范式中调谐到负向预测误差的神经元,这得到了小鼠实验证据的支持;(2)意外反应的幅度在数量上取决于标准刺激与异常刺激之间的差异,并随着刺激间隔的增加而减小。我们的研究结果表明,大脑的偏差检测依赖于双误差计算,为看似不同的实验方案提供了统一的解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9e6/12400919/2171cd1f9ef7/nihpp-2025.07.12.664417v3-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验