文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

探索与非小细胞肺癌免疫反应及抗生素影响相关的粪便微生物群特征:宏基因组学和机器学习方法的见解

Exploring fecal microbiota signatures associated with immune response and antibiotic impact in NSCLC: insights from metagenomic and machine learning approaches.

作者信息

Han Wenjie, Zhou Yuhang, Wang Yiwen, Liu Xiaolin, Sun Tao, Xu Junnan

机构信息

Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China.

Department of Pharmacology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China.

出版信息

Front Cell Infect Microbiol. 2025 Jul 28;15:1591076. doi: 10.3389/fcimb.2025.1591076. eCollection 2025.


DOI:10.3389/fcimb.2025.1591076
PMID:40792105
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12336193/
Abstract

BACKGROUND: Substantial interstudy heterogeneity in cancer immunotherapy-associated biomarkers has hindered their clinical applicability. To address this challenge, we performed a comprehensive integration of publicly available global metagenomic datasets. By leveraging metagenomic profiling and machine learning approaches, this study aimed to elucidate gut microbial signatures associated with immune response in lung cancer (LC) and to evaluate the modulatory effects of antibiotic exposure. METHODS: A systematic literature search was conducted to identify relevant datasets, resulting in the inclusion of 209 fecal metagenomic samples: 154 baseline samples (45 responders, 37 non-responders, and 72 healthy controls) and 55 longitudinal samples collected during immunotherapy. We performed taxonomic and functional characterization of gut microbiota (GM) differentiating responders from non-responders, delineated microbiome dynamics during treatment, and assessed the impact of antibiotics on key microbial taxa. Among eight machine learning algorithms evaluated, the optimal model was selected to construct a predictive framework for immunotherapy response. RESULTS: Microbial α-diversity was significantly elevated in responders compared to non-responders, with antibiotic administration further amplifying this difference-most notably at the species level. Integrative multi-omics analysis identified two pivotal microbial biomarkers, and , which were strongly associated with immunotherapy efficacy. A random forest-based classifier achieved robust predictive performance, with area under the curve (AUC) values of 0.82 and 0.79 at the species and genus levels, respectively. Notably, was further enriched in responders with poor progression-free survival (PFS <3 months), indicating a potential deleterious role. Antibiotic exposure significantly influenced the abundance and functional potential of these key taxa. KEGG-based functional analysis revealed the enrichment of amino acid metabolism pathways in responders. Additionally, CARD database annotation demonstrated that the majority of antibiotic resistance genes were associated with and , implicating these taxa in shaping microbial-mediated therapeutic responses. CONCLUSIONS: This study represents the first large-scale, cross-cohort integration of metagenomic data to identify reproducible GM signatures predictive of immune checkpoint inhibitor efficacy in LC. The findings not only underscore the prognostic relevance of specific taxa but also establish a foundation for developing microbiome-informed, personalized immunotherapeutic strategies.

摘要

背景:癌症免疫治疗相关生物标志物在不同研究间存在显著异质性,这阻碍了它们的临床应用。为应对这一挑战,我们对公开可用的全球宏基因组数据集进行了全面整合。通过利用宏基因组分析和机器学习方法,本研究旨在阐明与肺癌(LC)免疫反应相关的肠道微生物特征,并评估抗生素暴露的调节作用。 方法:进行系统的文献检索以识别相关数据集,最终纳入209份粪便宏基因组样本:154份基线样本(45名反应者、37名无反应者和72名健康对照)以及免疫治疗期间收集的55份纵向样本。我们对肠道微生物群(GM)进行了分类和功能表征,以区分反应者和无反应者,描绘了治疗期间微生物组的动态变化,并评估了抗生素对关键微生物分类群的影响。在评估的八种机器学习算法中,选择了最优模型来构建免疫治疗反应的预测框架。 结果:与无反应者相比,反应者的微生物α多样性显著升高,抗生素给药进一步放大了这种差异——最显著的是在物种水平。综合多组学分析确定了两个关键的微生物生物标志物, 和 ,它们与免疫治疗疗效密切相关。基于随机森林的分类器具有强大的预测性能,在物种和属水平下的曲线下面积(AUC)值分别为0.82和0.79。值得注意的是, 在无进展生存期较差(PFS<3个月)的反应者中进一步富集,表明其可能具有有害作用。抗生素暴露显著影响了这些关键分类群的丰度和功能潜力。基于KEGG的功能分析显示反应者中氨基酸代谢途径的富集。此外,CARD数据库注释表明,大多数抗生素抗性基因与 和 相关,这表明这些分类群在塑造微生物介导的治疗反应中发挥作用。 结论:本研究首次对宏基因组数据进行大规模、跨队列整合,以识别可预测LC中免疫检查点抑制剂疗效的可重复GM特征。研究结果不仅强调了特定分类群的预后相关性,还为开发基于微生物组的个性化免疫治疗策略奠定了基础。

相似文献

[1]
Exploring fecal microbiota signatures associated with immune response and antibiotic impact in NSCLC: insights from metagenomic and machine learning approaches.

Front Cell Infect Microbiol. 2025-7-28

[2]
ImmuProgML: machine learning-based dissection of cancer-immune dynamics during tumor progression to improve immunotherapy.

J Transl Med. 2025-7-25

[3]
Altered fecal microbial and metabolic profiles reveal potential mechanisms underlying anemia in patients with chronic renal failure.

Microbiol Spectr. 2025-8-5

[4]
Pharmaco-psychiatry and gut microbiome: a systematic review of effects of psychotropic drugs for bipolar disorder.

Microbiology (Reading). 2025-6

[5]
Systemic treatments for metastatic cutaneous melanoma.

Cochrane Database Syst Rev. 2018-2-6

[6]
Gut microbiome affects the response to immunotherapy in non-small cell lung cancer.

Thorac Cancer. 2024-5

[7]
Gut microbiota and SCFAs improve the treatment efficacy of chemotherapy and immunotherapy in NSCLC.

NPJ Biofilms Microbiomes. 2025-7-28

[8]
Integrated multi-omics analysis reveals the functional signature of microbes and metabolomics in pre-diabetes individuals.

Microbiol Spectr. 2025-7

[9]
Changes in gut microbiome following anti-tuberculosis treatment: a prospective cohort from eastern China.

BMC Infect Dis. 2025-4-1

[10]
Donor-derived microbial engraftment and gut microbiota shifts associated with weight loss following fecal microbiota transplantation.

Appl Environ Microbiol. 2025-7-23

本文引用的文献

[1]
Cancer situation in China: an analysis based on the global epidemiological data released in 2024.

Cancer Commun (Lond). 2025-2

[2]
Gut metatranscriptomics based de novo assembly reveals microbial signatures predicting immunotherapy outcomes in non-small cell lung cancer.

J Transl Med. 2024-11-19

[3]
Altered metabolism in cancer: insights into energy pathways and therapeutic targets.

Mol Cancer. 2024-9-18

[4]
Fecal microbiota transplantation: current challenges and future landscapes.

Clin Microbiol Rev. 2024-6-13

[5]
A gut microbial signature for combination immune checkpoint blockade across cancer types.

Nat Med. 2024-3

[6]
Gut microbial structural variation associates with immune checkpoint inhibitor response.

Nat Commun. 2023-11-16

[7]
Multi-kingdom gut microbiota analyses define bacterial-fungal interplay and microbial markers of pan-cancer immunotherapy across cohorts.

Cell Host Microbe. 2023-11-8

[8]
Identification of microbial markers associated with lung cancer based on multi-cohort 16 s rRNA analyses: A systematic review and meta-analysis.

Cancer Med. 2023-9

[9]
Assessing the Performance of a Novel Stool-Based Microbiome Test That Predicts Response to First Line Immune Checkpoint Inhibitors in Multiple Cancer Types.

Cancers (Basel). 2023-6-21

[10]
Non-small cell lung cancer patients treated with Anti-PD1 immunotherapy show distinct microbial signatures and metabolic pathways according to progression-free survival and PD-L1 status.

Oncoimmunology. 2023

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索