Suppr超能文献

使用机器学习开发并验证用于乳腺癌的缺氧和乳酸代谢预后评分(HLMPS)

Development and validation of a Hypoxia and Lactate Metabolism Prognostic Score (HLMPS) for breast cancer using machine learning.

作者信息

Fang Zhou, Liao Shichong, Wang Zhong, Li Juanjuan, Wang Lijun, Zhang Yimin, Guo Yueyue, Yao Feng

机构信息

Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China.

出版信息

Transl Cancer Res. 2025 Jul 30;14(7):4399-4415. doi: 10.21037/tcr-2025-1115. Epub 2025 Jul 27.

Abstract

BACKGROUND

Previous studies often overlooked the roles of hypoxia and lactate metabolism in the breast cancer (BRCA) microenvironment. This study developed and validated a novel prognostic model for BRCA based on hypoxia-related genes (HRGs) and lactate metabolism-related genes (LMRGs) using machine learning approaches. The aim was to identify molecular subtypes capable of predicting patient prognosis and treatment response, thereby facilitating precision medicine strategies for BRCA.

METHODS

This study utilized bulk RNA-sequencing data from The Cancer Genome Atlas (TCGA) BRCA cohort (1,079 tumor samples; 99 normal samples) as the training set, with five independent validation cohorts (GSE19615, GSE20685, GSE20711, GSE42568, GSE58812) retrieved from the Gene Expression Omnibus (GEO) database. HRGs and LMRGs were identified from the Molecular Signatures Database (MSigDB). A machine learning-based integrative approach was employed to construct the Hypoxia and Lactate Metabolism Prognostic Score (HLMPS) via 10-fold cross-validation and multiple algorithm combinations. Model robustness was rigorously assessed through Kaplan-Meier survival analysis, time-dependent receiver operating characteristic (ROC) curves, and calibration plots with Brier score quantification.

RESULTS

The HLMPS model demonstrated robust prognostic discrimination, with high-risk patients exhibiting significantly inferior overall survival compared to low-risk counterparts [training set areas under the curve (AUCs): 0.76, 0.77, 0.74 at 1/3/5 years; validation sets AUCs: 0.61, 0.65, 0.67 at 1/3/5 years]. Functional enrichment analysis revealed that patients with a high HLMPS tended to have dysregulation of cell cycle and neurodevelopmental pathways, while those with a low HLMPS exhibited activation of immune pathways, including T-cell receptor (TCR) signaling and antigen presentation. An Immune infiltration analysis showed that patients with a low HLMPS had higher levels of immune cell infiltration and better responsiveness to immunotherapy. Meanwhile, patients with a low HLMPS showed greater sensitivity to drugs such as irinotecan and palbociclib, while patients with a high HLMPS were more sensitive to drugs such as lapatinib and sorafenib.

CONCLUSIONS

The HLMPS model represents a novel and clinically actionable tool for prognosticating outcomes and therapeutic responses in BRCA patients. This study highlights the potential of precision medicine strategies that integrate HRGs and LMRGs based on tumor microenvironment (TME) features. Future work should focus on validating the HLMPS model in larger, multicenter cohorts and determining its clinical applicability in guiding personalized treatment decisions for patients with BRCA.

摘要

背景

以往的研究常常忽视缺氧和乳酸代谢在乳腺癌(BRCA)微环境中的作用。本研究利用机器学习方法,基于缺氧相关基因(HRGs)和乳酸代谢相关基因(LMRGs)开发并验证了一种新的BRCA预后模型。目的是识别能够预测患者预后和治疗反应的分子亚型,从而促进BRCA的精准医学策略。

方法

本研究将来自癌症基因组图谱(TCGA)BRCA队列(1079个肿瘤样本;99个正常样本)的批量RNA测序数据用作训练集,并从基因表达综合数据库(GEO)中检索了五个独立的验证队列(GSE19615、GSE20685、GSE20711、GSE42568、GSE58812)。从分子特征数据库(MSigDB)中识别HRGs和LMRGs。采用基于机器学习的综合方法,通过10倍交叉验证和多种算法组合构建缺氧和乳酸代谢预后评分(HLMPS)。通过Kaplan-Meier生存分析、时间依赖性受试者工作特征(ROC)曲线以及带有Brier评分量化的校准图,严格评估模型的稳健性。

结果

HLMPS模型显示出强大的预后判别能力,高风险患者的总生存期明显低于低风险患者[训练集曲线下面积(AUC):1/3/5年时分别为0.76、0.77、0.74;验证集AUC:1/3/5年时分别为0.61、0.65、0.67]。功能富集分析表明,HLMPS高的患者往往存在细胞周期和神经发育途径失调,而HLMPS低的患者则表现出免疫途径的激活,包括T细胞受体(TCR)信号传导和抗原呈递。免疫浸润分析显示,HLMPS低的患者免疫细胞浸润水平较高,对免疫治疗的反应较好。同时,HLMPS低的患者对伊立替康和帕博西尼等药物更敏感,而HLMPS高的患者对拉帕替尼和索拉非尼等药物更敏感。

结论

HLMPS模型是一种用于预测BRCA患者预后和治疗反应的新型且具有临床可操作性的工具。本研究突出了基于肿瘤微环境(TME)特征整合HRGs和LMRGs的精准医学策略的潜力。未来的工作应集中在更大规模的多中心队列中验证HLMPS模型,并确定其在指导BRCA患者个性化治疗决策中的临床适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb69/12335689/e28873466dda/tcr-14-07-4399-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验