Suppr超能文献

CRISPR筛选与基因表达数据的综合分析确定了一种与神经母细胞瘤免疫微环境相关的三基因预后模型。

Integrative analysis of CRISPR screening and gene expression data identifies a three-gene prognostic model associated with immune microenvironment in neuroblastoma.

作者信息

Li Xin, Li Wanrong, Wang Jian

机构信息

Department of Pathology, Tianjin Cancer Hospital Airport Hospital, National Clinical Research Center for Cancer, Tianjin, China.

Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.

出版信息

Transl Cancer Res. 2025 Jul 30;14(7):4058-4070. doi: 10.21037/tcr-2024-2472. Epub 2025 Jul 14.

Abstract

BACKGROUND

Neuroblastoma is a heterogeneous pediatric tumor with variable clinical outcomes. Current prognostic markers are insufficient to predict patient survival accurately, necessitating the identification of novel biomarkers and therapeutic targets. This study aimed to develop a robust prognostic model by integrating CRISPR screening data and transcriptomic profiles, and to explore its correlation with the tumor immune microenvironment.

METHODS

We integrated Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) screening data from the DepMap database (version 24Q2) and gene expression profiles from neuroblastoma patients to identify key genes associated with neuroblastoma prognosis. Essential genes with Computational Evaluation of RNAi Essentiality Scores (CERES) scores less than -1 in at least 80% of 34 neuroblastoma cell lines were intersected with differentially expressed genes (|logFC| >2, P<0.05) from the National Genomics Data Center (NGDC) dataset (accession code HRA002064), resulting in 43 overlapping genes. Random forest analysis and multivariate Cox regression were conducted on the GSE49710 training set (n=498) to construct a prognostic model. The model was externally validated using the E-MTAB-8248 dataset (n=223). Immune infiltration and immunotherapy response were assessed using Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data (ESTIMATE), Microenvironment Cell Populations counter (MCPcounter), Cell-type Identification By Estimating Relative Subsets Of RNA Transcripts (CIBERSORT), immunophenoscore (IPS), and Tumor Immune Dysfunction and Exclusion (TIDE) algorithms.

RESULTS

A three-gene prognostic model comprising , , and was established. Patients were stratified into high-risk and low-risk groups based on the median RiskScore of 9.514526. In the training set, high-risk patients exhibited significantly poorer overall survival compared to low-risk patients (log-rank test, P<0.001). The model outperformed traditional clinical factors and demonstrated consistent prognostic value in the external validation cohort. High-risk patients showed lower immune cell infiltration, higher TIDE scores, and lower IPS values, suggesting an immunosuppressive microenvironment and reduced likelihood of responding to immunotherapy. In contrast, low-risk patients had higher immune infiltration and a predicted immunotherapy response rate of 70% versus 36% in the high-risk group.

CONCLUSIONS

The three-gene prognostic model effectively stratifies neuroblastoma patients by survival risk and correlates with immune microenvironment characteristics. This model has potential clinical utility for prognosis prediction and guiding personalized immunotherapy strategies in neuroblastoma.

摘要

背景

神经母细胞瘤是一种异质性儿科肿瘤,临床结局各异。目前的预后标志物不足以准确预测患者的生存情况,因此需要鉴定新的生物标志物和治疗靶点。本研究旨在通过整合CRISPR筛选数据和转录组图谱来建立一个强大的预后模型,并探讨其与肿瘤免疫微环境的相关性。

方法

我们整合了DepMap数据库(24Q2版本)中的成簇规律间隔短回文重复序列(CRISPR)筛选数据和神经母细胞瘤患者的基因表达谱,以鉴定与神经母细胞瘤预后相关的关键基因。在34个神经母细胞瘤细胞系中,至少80%的细胞系中RNA干扰必需性评分(CERES)小于-1的必需基因与国家基因组数据中心(NGDC)数据集(登录号HRA002064)中的差异表达基因(|logFC|>2,P<0.05)进行交叉分析,得到43个重叠基因。对GSE49710训练集(n=498)进行随机森林分析和多变量Cox回归,以构建预后模型。使用E-MTAB-8248数据集(n=223)对该模型进行外部验证。使用基于表达数据估计恶性肿瘤组织中的基质和免疫细胞(ESTIMATE)、微环境细胞群体计数器(MCPcounter)、通过估计RNA转录本相对子集进行细胞类型鉴定(CIBERSORT)、免疫表型评分(IPS)以及肿瘤免疫功能障碍和排除(TIDE)算法评估免疫浸润和免疫治疗反应。

结果

建立了一个由 、 和 组成的三基因预后模型。根据中位数风险评分9.514526将患者分为高危和低危组。在训练集中,高危患者的总生存期明显低于低危患者(对数秩检验,P<0.001)。该模型优于传统临床因素,并在外部验证队列中显示出一致的预后价值。高危患者的免疫细胞浸润较低,TIDE评分较高,IPS值较低,表明免疫抑制微环境以及对免疫治疗反应的可能性降低。相比之下,低危患者的免疫浸润较高,预测的免疫治疗反应率为70%,而高危组为36%。

结论

三基因预后模型可有效根据生存风险对神经母细胞瘤患者进行分层,并与免疫微环境特征相关。该模型在神经母细胞瘤的预后预测和指导个性化免疫治疗策略方面具有潜在的临床应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d23/12335716/4f88a26f72d1/tcr-14-07-4058-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验