Georgiou Dimitrios, Sun Danqi, Liu Xing, Athanasiou Christos E
Daniel Guggenheim School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332.
Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102.
Proc Natl Acad Sci U S A. 2025 Aug 19;122(33):e2502613122. doi: 10.1073/pnas.2502613122. Epub 2025 Aug 12.
Over 350 million metric tons of plastic waste are generated annually, with most ending up in landfills, dumps, or the environment, posing significant risks. Mechanical recycling remains underutilized, largely due to the high variability in the mechanical properties of recycled plastics (recyclates). This variability undermines performance reliability and hinders the adoption of recyclates in demanding industrial applications. Inspired by natural materials, known for their mechanical robustness despite microstructural stochasticity, we propose a universal, chemistry-agnostic, brick-and-mortar design tailored for recycled polymers. In this design, stiff recycled plastic platelets (bricks) are embedded in a soft virgin polymer matrix (mortar), which accommodates deformation and redistributes stress. To predict the effective modulus, strength, and property variability of such structures, we developed an uncertainty-aware tension-shear-chain model, combining Monte Carlo simulations with literature-based distributions of recyclates' stiffness and conservative interfacial parameter stochasticity assumptions. We validated our model using nacre-inspired composites fabricated from recycled high-density polyethylene (rHDPE) platelets and polydimethylsiloxane (PDMS) mortar. The experimental results matched model predictions, confirming significant suppression of variability. In a case study on industrial HDPE stretch film, our design reduced modulus variability by up to 93% and maximum permissible strain variability by at least 68% compared to input rHDPE, while matching the modulus of virgin HDPE film. This work introduces a design-enabled variability-suppression strategy for recycled plastics, able to transform highly heterogenous materials into structurally robust products. By supporting virgin-plastic substitution and circular design strategies, our approach can enable the broader adoption of recyclates by several industries.
每年产生超过3.5亿吨塑料垃圾,其中大部分最终进入垃圾填埋场、垃圾场或环境中,带来重大风险。机械回收利用仍未得到充分利用,主要原因是回收塑料(再生塑料)的机械性能差异很大。这种变异性破坏了性能可靠性,并阻碍了再生塑料在要求苛刻的工业应用中的采用。受天然材料的启发,天然材料尽管微观结构具有随机性但仍具有机械坚固性,我们提出了一种通用的、与化学无关的、专为再生聚合物量身定制的实体结构设计。在这种设计中,硬质再生塑料薄片(砖块)嵌入软质原生聚合物基体(灰浆)中,后者可适应变形并重新分配应力。为了预测此类结构的有效模量、强度和性能变异性,我们开发了一种考虑不确定性的拉伸-剪切链模型,将蒙特卡洛模拟与基于文献的再生塑料刚度分布以及保守的界面参数随机性假设相结合。我们使用由再生高密度聚乙烯(rHDPE)薄片和聚二甲基硅氧烷(PDMS)灰浆制成的仿珍珠母复合材料验证了我们的模型。实验结果与模型预测相符,证实了变异性得到了显著抑制。在一项关于工业HDPE拉伸膜的案例研究中,与输入的rHDPE相比,我们的设计将模量变异性降低了高达93%,最大允许应变变异性降低了至少68%,同时与原生HDPE膜的模量相匹配。这项工作为再生塑料引入了一种基于设计的变异性抑制策略,能够将高度异质的材料转变为结构坚固的产品。通过支持原生塑料替代和循环设计策略,我们的方法可以使多个行业更广泛地采用再生塑料。