Brenker Luca, Aschenbrenner Sabine, Bubeck Felix, Staykov Kaloyan, Gebhardt Carolin, Wolf Benedict, Jendrusch Michael, Kröll Ann-Sophie, Becker Jonas, Ambiel Ina, Fackler Oliver T, Grimm Dirk, Mathony Jan, Niopek Dominik
Institute of Pharmacy and Molecular Biotechnology (IPMB), Faculty of Engineering Sciences, Heidelberg University, 69120 Heidelberg, Germany.
Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Medical Faculty, BioQuant, Heidelberg University, 69120 Heidelberg, Germany.
Nucleic Acids Res. 2025 Jul 19;53(14). doi: 10.1093/nar/gkaf752.
CRISPR-Cas technologies have revolutionized life sciences by enabling programmable genome editing across diverse organisms. Achieving dynamic and precise control over CRISPR-Cas activity with exogenous triggers, such as light or chemical ligands, remains an important need. Existing tools for CRISPR-Cas control are often limited to specific Cas orthologs or selected applications, restricting their versatility. Anti-CRISPR (Acr) proteins are natural inhibitors of CRISPR-Cas systems and provide a flexible regulatory layer but are constitutively active in their native forms. In this study, we built on our previously reported concept for optogenetic CRISPR-Cas control with engineered, light-switchable anti-CRISPR proteins and expanded it from ortholog-specific Acrs towards AcrIIA5 and AcrVA1, broad-spectrum inhibitors of CRISPR-Cas9 and CRISPR-Cas12a, respectively. We then conceived and implemented a novel, chemogenetic anti-CRISPR platform based on engineered, circularly permuted ligand receptor domains, that together respond to six clinically relevant drugs. The resulting toolbox achieves both optogenetic and chemogenetic control of genome editing in human cells with a wide range of CRISPR-Cas effectors, including type II-A and II-C CRISPR-Cas9s, and CRISPR-Cas12a. In sum, this work establishes a versatile platform for the multidimensional control of CRISPR-Cas systems, with immediate applications in basic research and biotechnology, and with the potential for therapeutic use in the future.
CRISPR-Cas技术通过实现对多种生物体的可编程基因组编辑,给生命科学带来了革命性变化。利用光或化学配体等外源性触发因素对CRISPR-Cas活性进行动态精确控制,仍然是一项重要需求。现有的CRISPR-Cas控制工具通常局限于特定的Cas直系同源物或选定的应用,限制了它们的通用性。抗CRISPR(Acr)蛋白是CRISPR-Cas系统的天然抑制剂,提供了一个灵活的调控层,但在其天然形式下是组成型活性的。在本研究中,我们基于之前报道的用工程化的、光可切换抗CRISPR蛋白进行光遗传学CRISPR-Cas控制的概念,并将其从直系同源物特异性Acr扩展到AcrIIA5和AcrVA1,它们分别是CRISPR-Cas9和CRISPR-Cas12a的广谱抑制剂。然后,我们构思并实施了一个基于工程化的、环状排列的配体受体结构域的新型化学遗传学抗CRISPR平台,该平台共同响应六种临床相关药物。由此产生的工具包实现了对人类细胞中基因组编辑的光遗传学和化学遗传学控制,使用了广泛的CRISPR-Cas效应器,包括II-A型和II-C型CRISPR-Cas9以及CRISPR-Cas12a。总之,这项工作建立了一个用于CRISPR-Cas系统多维控制的通用平台,在基础研究和生物技术中有直接应用,并在未来有治疗用途的潜力。