Wang Fang, Zhao Pengpeng, Bi Xiaonan, Zheng Ruyi, Tian Xuhui, Xu Jianan, Jiang Suping, Li Guobang, Shen Yulong, She Qunxin
CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology and Microbial Technology Institute, Shandong University, Qingdao 266237, China.
State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
Nucleic Acids Res. 2025 Jul 19;53(14). doi: 10.1093/nar/gkaf744.
Type III CRISPR-Cas systems synthesize cyclic oligoadenylates (cOAs), the second messengers that bind to the CARF (CRISPR-associated Rossman fold) sensor domain and allosterically activate the effector domain of CRISPR ancillary effectors to mediate antiviral defense. An arsenal of such effectors has been identified, but only a minority of them have been characterized thus far. Here, CaPN (a CRISPR-associated PIN domain nuclease), a novel effector protein encoded by Saccharolobus islandicus, was characterized. Biochemical characterization of CaPN revealed that the CARF domain senses cA4 (cyclic tetraadenylate), and its binding to the CARF domain activates the PIN domain for robust RNA cleavage. Genetic assay showed that CaPN mediates growth arrest/cell death to its archaeal host upon cA4 sensing. Determination of the crystal structures of CaPN in apo and in the cA4-bound form revealed that cA4-CARF interactions trigger the conformational changes, leading to the dimerization of the CaPN dimers. These structural changes reposition D296, one of the active site residues in the catalytic pocket, to yield an active PIN domain nuclease. Together, these results unveil a novel molecular mechanism for the activation of cOA-activated Cas ancillary RNases in the CRISPR signaling pathway.
III型CRISPR-Cas系统可合成环状寡腺苷酸(cOAs),这些第二信使与CARF(CRISPR相关的Rossman折叠)传感器结构域结合,并通过变构激活CRISPR辅助效应蛋白的效应结构域,从而介导抗病毒防御。人们已经鉴定出一系列这样的效应蛋白,但到目前为止,只有少数得到了表征。在这里,我们对来自冰岛嗜热栖热菌的一种新型效应蛋白CaPN(一种CRISPR相关的PIN结构域核酸酶)进行了表征。CaPN的生化特性表明,CARF结构域可感知cA4(环状四腺苷酸),其与CARF结构域的结合激活PIN结构域,使其具有强大的RNA切割能力。遗传分析表明,CaPN在感知cA4后会介导其古宿主的生长停滞/细胞死亡。对apo形式和cA4结合形式的CaPN晶体结构的测定表明,cA4-CARF相互作用引发构象变化,导致CaPN二聚体发生二聚化。这些结构变化使催化口袋中的活性位点残基之一D296重新定位,从而产生一个有活性的PIN结构域核酸酶。这些结果共同揭示了CRISPR信号通路中cOA激活的Cas辅助核糖核酸酶激活的一种新分子机制。