Cheng Xusheng, Xuan Tao, Hu Haoran, Wang Jianchi, Zai Jiantao, Wang Liwei
Institute of Refrigeration and Cryogenics, Key Laboratory of Power Machinery and Engineering of MOE, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Non-Carbon Energy Conversion and Utilization Institute, Shanghai 200240, China.
School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
J Colloid Interface Sci. 2025 Dec 15;700(Pt 3):138637. doi: 10.1016/j.jcis.2025.138637. Epub 2025 Aug 5.
Alkaline zinc-based flow batteries suffer from poor zinc reversibility due to dendrite growth and parasitic reactions, which significantly shorten their cycling lifespan. A key challenge lies in the rational design of ligands to eliminate concentration polarization caused by mismatched diffusion and interfacial reaction rates, thereby inducing and regulating uniform zinc deposition. In this study, we propose a thermodynamic descriptor-guided ligand screening strategy, using the metal-ligand stability constant (log K) as a quantitative criterion to simultaneously optimize deposition morphology and interfacial ion kinetics. Guided by this principle, nitrilotriacetic acid (NTA, log K = 11.98) is identified as a robust chelating agent under strongly alkaline conditions (pH > 14). Its moderate coordination strength enables the disruption of the native Zn-HO network, effectively suppressing hydrogen evolution while maintaining near-theoretical Zn desolvation kinetics. In situ microscopy and electrochemical analyses reveal that NTA directs preferential Zn(002) growth, yielding dendrite-free deposition at ultrahigh current densities (80 mA cm) and high areal capacities (40 mAh cm). Furthermore, NTA facilitates efficient Zn diffusion (5.77 × 10 cm/s), outperforming strong chelators such as ethylenediaminetetraacetic acid. As a result, Zn//Zn symmetric cells exhibit stable cycling over 400 h, while NTA-enabled ZnFe flow batteries achieve 700 cycles with 99 % coulombic efficiency and minimal capacity decay. This work establishes log K as a practical screening descriptor for multi-objective electrolyte optimization and provides a scalable pathway for the development of high-performance alkaline zinc flow batteries.
碱性锌基液流电池由于枝晶生长和寄生反应而存在锌可逆性差的问题,这显著缩短了它们的循环寿命。一个关键挑战在于合理设计配体,以消除由扩散和界面反应速率不匹配引起的浓度极化,从而诱导和调节均匀的锌沉积。在本研究中,我们提出了一种基于热力学描述符的配体筛选策略,使用金属 - 配体稳定性常数(log K)作为定量标准,以同时优化沉积形态和界面离子动力学。在此原理的指导下,氮川三乙酸(NTA,log K = 11.98)被确定为强碱性条件(pH > 14)下的一种强大螯合剂。其适度的配位强度能够破坏原生的Zn - HO网络,有效抑制析氢反应,同时保持接近理论的锌去溶剂化动力学。原位显微镜和电化学分析表明,NTA引导优先的Zn(002)生长,在超高电流密度(80 mA cm)和高面积容量(40 mAh cm)下实现无枝晶沉积。此外,NTA促进了高效的锌扩散(5.77 × 10 cm/s),优于乙二胺四乙酸等强螯合剂。结果,Zn//Zn对称电池在400小时以上表现出稳定的循环,而使用NTA的锌铁液流电池实现了700次循环,库仑效率为99%,容量衰减最小。这项工作将log K确立为多目标电解质优化的实用筛选描述符,并为高性能碱性锌液流电池的开发提供了一条可扩展的途径。