Suppr超能文献

异喹啉作为电解锌锰电池的电解质添加剂:卓越的循环稳定性和面积容量

Isoquinoline as an Electrolyte Additive for Electrolytic Zn-MnO Batteries: Superior Cycling Stability and Areal Capacity.

作者信息

Li Hao, Wang Shuo, Feng Zhongyuan, Liu Zonghang, Liu Youlin, Yang Meng, Gao Peng, Fu Lijun, Zhao Xiangyu

机构信息

State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Functional Composites, College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China.

School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong, Shenzhen, 518172, China.

出版信息

Adv Mater. 2025 Aug 25:e14328. doi: 10.1002/adma.202514328.

Abstract

Aqueous electrolytic Zn-MnO batteries hold great promise for energy storage applications owing to their high theoretical electromotive force and energy density. However, the zinc anode suffers from severe corrosion in strongly acidic electrolytes, leading to hydrogen evolution, low zinc utilization, and premature battery failure. To address these challenges, isoquinoline is introduced as an additive in a chloride-based acidic electrolyte. Isoquinoline molecules preferentially adsorb on the Zn surface and incorporate into the Zn solvation sheath, thereby effectively suppressing zinc corrosion and enhancing Zn plating/stripping reversibility in both half-cell and full-cell configurations. At an optimized concentration of 500 mg L isoquinoline, the modified electrolyte enables the electrolytic Zn-MnO battery to achieve outstanding cycling stability, delivering 3650 cycles with an average coulombic efficiency of 98%, demonstrating highly competitive cycling performance among reported electrolytic Zn-MnO systems. Furthermore, this electrolyte modulation supports the development of a zinc metal anode-free full cell, which delivers a high areal discharge capacity of ≈8 mAh cm and maintains a stable discharge voltage plateau of ≈1.9 V. These findings underscore the pivotal role of isoquinoline in stabilizing the zinc interface and advancing the performance of electrolytic Zn-MnO batteries.

摘要

水系电解锌-二氧化锰电池因其高理论电动势和能量密度,在储能应用方面具有巨大潜力。然而,锌负极在强酸性电解质中会遭受严重腐蚀,导致析氢、锌利用率低以及电池过早失效。为应对这些挑战,异喹啉被引入到基于氯化物的酸性电解质中作为添加剂。异喹啉分子优先吸附在锌表面并融入锌溶剂化鞘层,从而有效抑制锌腐蚀,并增强半电池和全电池配置下锌的电镀/剥离可逆性。在异喹啉优化浓度为500 mg L时,改性电解质使水系电解锌-二氧化锰电池实现了出色的循环稳定性,可循环3650次,平均库仑效率为98%,在已报道的水系电解锌-二氧化锰体系中展现出极具竞争力的循环性能。此外,这种电解质调制有助于开发无锌金属负极全电池,该全电池可提供约8 mAh cm的高面积放电容量,并维持约1.9 V的稳定放电电压平台。这些发现凸显了异喹啉在稳定锌界面和提升水系电解锌-二氧化锰电池性能方面的关键作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验