Hoopes Jenna R, Lyshchik Andrej, Xiao Tania S, Berzigotti Annalisa, Fetzer David T, Forsberg Flemming, Sidhu Paul S, Wessner Corinne E, Wilson Stephanie R, Keith Scott W
Department of Pharmacology, Physiology, and Cancer Biology, Division of Biostatistics and Bioinformatics, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
Department of Radiology, Thomas Jefferson University, Philadelphia PA, USA.
Ultrasound Med Biol. 2025 Aug 11. doi: 10.1016/j.ultrasmedbio.2025.06.029.
Liver cancer ranks among the most lethal cancers. Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and better diagnostic tools are needed to diagnose patients at risk. The aim is to develop a machine learning algorithm that enhances the sensitivity and specificity of the Contrast-Enhanced Ultrasound Liver Imaging Reporting and Data System (CEUS-LIRADS) in classifying indeterminate at-risk liver nodules (LR-M, LR-3, LR-4) as HCC or non-HCC.
Our study includes patients at risk for HCC with untreated indeterminate focal liver observations detected on US or contrast-enhanced CT or MRI performed as part of their clinical standard of care from January 2018 to November 2022. Recursive partitioning was used to improve HCC diagnosis in indeterminate at-risk nodules. Demographics, blood biomarkers, and CEUS imaging features were evaluated as potential predictors for the algorithm to classify nodules as HCC or non-HCC.
We evaluated 244 indeterminate liver nodules from 224 patients (mean age 62.9 y). Of the nodules, 73.2% (164/224) were from males. The algorithm was trained on a random 2/3 partition of 163 liver nodules and correctly reclassified more than half of the HCC liver nodules previously categorized as indeterminate in the independent 1/3 test partition of 81 liver nodules, achieving a sensitivity of 56.3% (95% CI: 42.0%, 70.2%) and specificity of 93.9% (95% CI: 84.4%, 100.0%).
Machine learning was applied to the multicenter, multinational study of CEUS LI-RADS indeterminate at-risk liver nodules and correctly diagnosed HCC in more than half of the HCC nodules.
肝癌是最致命的癌症之一。肝细胞癌(HCC)是原发性肝癌最常见的类型,需要更好的诊断工具来诊断有风险的患者。目的是开发一种机器学习算法,以提高对比增强超声肝脏成像报告和数据系统(CEUS-LIRADS)在将不确定的有风险肝脏结节(LR-M、LR-3、LR-4)分类为HCC或非HCC时的敏感性和特异性。
我们的研究纳入了2018年1月至2022年11月期间因临床标准护理进行的超声、对比增强CT或MRI检查发现未治疗的不确定局灶性肝脏病变而有HCC风险的患者。采用递归划分法改善对不确定有风险结节的HCC诊断。将人口统计学、血液生物标志物和CEUS成像特征评估为算法将结节分类为HCC或非HCC的潜在预测因素。
我们评估了224例患者的244个不确定肝脏结节(平均年龄62.9岁)。其中,73.2%(164/224)的结节来自男性。该算法在163个肝脏结节的随机2/3划分上进行训练,并在81个肝脏结节的独立1/3测试划分中正确地重新分类了超过一半之前被归类为不确定的HCC肝脏结节,敏感性达到56.3%(95%CI:42.0%,70.2%),特异性达到93.9%(95%CI:84.4%,100.0%)。
机器学习应用于CEUS LI-RADS不确定有风险肝脏结节的多中心、跨国研究,并在超过一半的HCC结节中正确诊断出HCC。