Yang Ruixue, Yang Xu, Xie Shicheng, Yu Xuexiang
Key Laboratory of Aviation-aerospace-ground Cooperative Monitoring and Early Warning of Coal Mining-induced Disasters of Anhui Higher Education Institutes, Anhui University of Science and Technology, KLAHEI (KLAHEI18015), Huainan, 232001, China.
Engineering Research Center of Mining Area Environmental and Disaster Cooperative Monitoring, Anhui University of Science and Technology, Huainan, 232001, China.
Sci Rep. 2025 Aug 12;15(1):29553. doi: 10.1038/s41598-025-15376-z.
Zenith Total Delay (ZTD) is integral to applications such as atmospheric water vapor inversion and precise positioning in the Global Navigation Satellite System (GNSS). The development of high-precision regional ZTD models has emerged as a significant area of research within the GNSS domain. This study addresses the challenges associated with achieving high-precision tropospheric delay predictions under specific conditions and the limitations of CNN-LSTM models, particularly regarding suboptimal hyperparameter optimization and convergence to local optima. We propose a novel regional ZTD prediction model, the CNN-LSTM-Multihead-Attention (CLMA) model, optimized using the Dung Beetle Optimization (DBO), referred to as ZTD-DBO-CLMA. This model synergistically integrates the spatial feature extraction capabilities of Convolutional Neural Networks (CNN) with the temporal sequence modeling strengths of Long Short-Term Memory (LSTM) networks, enhanced through advanced hyperparameter optimization techniques. The model facilitates synchronized learning of CNN and LSTM components via the DBO optimization algorithm and the incorporation of a multihead attention mechanism.In our study, we utilized five consecutive months of ZTD data from 40 International GNSS Service (IGS) stations within the European region, sampled at one-hour intervals, to investigate regional ZTD prediction models. We employed the ZTD-DBO-CLMA model and compared it to the ZTD-CLMA model, which lacks DBO optimization. The results indicate that the ZTD-DBO-CLMA model significantly enhances prediction accuracy, reducing the mean absolute error (MAE) and root mean square error (RMSE) by 0.31 mm and 1.38 mm, respectively, while increasing the coefficient of determination (R²) by 39.43%. Furthermore, the DBO algorithm consistently demonstrates its optimization efficacy across diverse weather conditions, thereby improving the precision of ZTD predictions.
天顶总延迟(ZTD)对于诸如大气水汽反演和全球导航卫星系统(GNSS)中的精密定位等应用至关重要。高精度区域ZTD模型的开发已成为GNSS领域的一个重要研究方向。本研究探讨了在特定条件下实现高精度对流层延迟预测所面临的挑战以及卷积神经网络-长短期记忆(CNN-LSTM)模型的局限性,特别是在超参数优化欠佳和收敛到局部最优方面。我们提出了一种新颖的区域ZTD预测模型,即卷积神经网络-长短期记忆-多头注意力(CLMA)模型,并使用蜣螂优化算法(DBO)对其进行优化,称为ZTD-DBO-CLMA。该模型将卷积神经网络(CNN)的空间特征提取能力与长短期记忆(LSTM)网络的时间序列建模优势进行了协同整合,并通过先进的超参数优化技术得到了增强。该模型通过DBO优化算法以及多头注意力机制的引入,促进了CNN和LSTM组件的同步学习。在我们的研究中,我们利用了欧洲地区40个国际GNSS服务(IGS)站连续五个月的ZTD数据,采样间隔为一小时,以研究区域ZTD预测模型。我们使用了ZTD-DBO-CLMA模型,并将其与缺乏DBO优化的ZTD-CLMA模型进行了比较。结果表明,ZTD-DBO-CLMA模型显著提高了预测精度,平均绝对误差(MAE)和均方根误差(RMSE)分别降低了0.31毫米和1.38毫米,同时决定系数(R²)提高了39.43%。此外,DBO算法在不同天气条件下始终展现出其优化效果,从而提高了ZTD预测的精度。