文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

优化T细胞转导:一种用于高效且可扩展基因递送的新型转导装置。

Optimizing T cell transduction: a novel transduction device for efficient and scalable gene delivery.

作者信息

Lee Kang-Zheng, Nguyen Tan Dai, Liu Dan

机构信息

Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Singapore, 138668, Singapore.

出版信息

J Transl Med. 2025 Aug 12;23(1):899. doi: 10.1186/s12967-025-06836-1.


DOI:10.1186/s12967-025-06836-1
PMID:40796872
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12341239/
Abstract

BACKGROUND: Viral transduction is a critical step in the manufacturing of genetically modified T cells for immunotherapies, yet conventional transduction methods suffer from low to medium efficiency, high vector consumption, and limited scalability. METHODS: To address these challenges, we introduce the Transduction Boosting Device (TransB), an innovative, automated, and closed-system platform designed to enable efficient and scalable gene delivery and overcome the limitations of conventional transduction methods. TransB improves cell-virus interactions by facilitating proximity between target cells and viral vectors. RESULTS: TransB demonstrated up to 1-fold decrease in processing time, 3-fold reduction in viral vector consumption, and 0.7-fold increase in transduction efficiency compared to 24-well plate method for donor T cell transduction in studies evaluating its impact on transduction process. Comparison studies transducing T cells from three different donors with Lenti-GFP vectors showed that TransB achieved an average 0.5-fold improvement in transduction efficiencies while maintaining comparable post-transduction cell recovery, viability, growth, and phenotype compared to 24-well plate. Furthermore, TransB delivered consistent performance across two different input cell numbers demonstrating scalability of the process. CONCLUSION: These findings suggest that TransB could significantly shorten the transduction time, reduce the transduction cost and improve the transduction efficiency for manufacturing genetically modified T cell therapies. It shows strong potential as a robust, efficient, and scalable platform to enhance T cell therapy manufacturing and help overcome current manufacturing challenges in the field.

摘要

背景:病毒转导是用于免疫治疗的基因改造T细胞制造过程中的关键步骤,但传统的转导方法存在效率低至中等、载体消耗高以及可扩展性有限等问题。 方法:为应对这些挑战,我们引入了转导增强装置(TransB),这是一个创新的、自动化的封闭系统平台,旨在实现高效且可扩展的基因递送,并克服传统转导方法的局限性。TransB通过促进靶细胞与病毒载体之间的接近度来改善细胞-病毒相互作用。 结果:在评估其对转导过程影响的研究中,与24孔板法相比,TransB在供体T细胞转导中处理时间最多减少1倍,病毒载体消耗减少3倍,转导效率提高0.7倍。用慢病毒绿色荧光蛋白(Lenti-GFP)载体转导来自三个不同供体的T细胞的比较研究表明,与24孔板相比,TransB在转导效率上平均提高了0.5倍,同时在转导后细胞恢复、活力、生长和表型方面保持相当。此外,TransB在两种不同的输入细胞数量下都表现出一致的性能,证明了该过程的可扩展性。 结论:这些发现表明,TransB可以显著缩短转导时间,降低转导成本,并提高基因改造T细胞疗法制造的转导效率。它显示出作为一个强大、高效且可扩展的平台的巨大潜力,以增强T细胞疗法制造并帮助克服该领域当前的制造挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2342/12341239/a560d12faea2/12967_2025_6836_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2342/12341239/c83d90b6b64a/12967_2025_6836_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2342/12341239/04aa0967a38e/12967_2025_6836_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2342/12341239/1310ce2b720c/12967_2025_6836_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2342/12341239/2b62e619f3f1/12967_2025_6836_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2342/12341239/a560d12faea2/12967_2025_6836_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2342/12341239/c83d90b6b64a/12967_2025_6836_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2342/12341239/04aa0967a38e/12967_2025_6836_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2342/12341239/1310ce2b720c/12967_2025_6836_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2342/12341239/2b62e619f3f1/12967_2025_6836_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2342/12341239/a560d12faea2/12967_2025_6836_Fig5_HTML.jpg

相似文献

[1]
Optimizing T cell transduction: a novel transduction device for efficient and scalable gene delivery.

J Transl Med. 2025-8-12

[2]
Transduction of γδ T cells with Baboon envelope pseudotyped lentiviral vector encoding chimeric antigen receptors for translational and clinical applications.

Front Immunol. 2025-6-6

[3]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[4]
A 3-in-1 integrated automated platform for rapid CAR-T cell manufacturing: activation, transduction, and expansion in a hollow-fiber system.

Cytotherapy. 2025-8

[5]
T cell-specific non-viral DNA delivery and in vivo CAR-T generation using targeted lipid nanoparticles.

J Immunother Cancer. 2025-7-13

[6]
Depth filtration for clarification of intensified lentiviral vector suspension cell culture.

Biotechnol Prog. 2024

[7]
Comparison of self-administered survey questionnaire responses collected using mobile apps versus other methods.

Cochrane Database Syst Rev. 2015-7-27

[8]
Role of Cell Membrane-Vector Interactions in Successful Gene Delivery.

Acc Chem Res. 2016-7-26

[9]
Automated devices for identifying peripheral arterial disease in people with leg ulceration: an evidence synthesis and cost-effectiveness analysis.

Health Technol Assess. 2024-8

[10]
Hybrid closed-loop systems for managing blood glucose levels in type 1 diabetes: a systematic review and economic modelling.

Health Technol Assess. 2024-12

本文引用的文献

[1]
From bench to bedside: the history and progress of CAR T cell therapy.

Front Immunol. 2023

[2]
A straightforward microfluidic-based approach toward optimizing transduction efficiency of HIV-1-derived lentiviral vectors in BCP-ALL cells.

Biotechnol Rep (Amst). 2023-3-12

[3]
Engineering the next generation of cell-based therapeutics.

Nat Rev Drug Discov. 2022-9

[4]
Scaling up and scaling out: Advances and challenges in manufacturing engineered T cell therapies.

Int Rev Immunol. 2022

[5]
High efficiency closed-system gene transfer using automated spinoculation.

J Transl Med. 2021-11-24

[6]
Scalable Manufacturing of CAR T cells for Cancer Immunotherapy.

Blood Cancer Discov. 2021-9

[7]
Viral vector platforms within the gene therapy landscape.

Signal Transduct Target Ther. 2021-2-8

[8]
Optimized Assessment of qPCR-Based Vector Copy Numbers as a Safety Parameter for GMP-Grade CAR T Cells and Monitoring of Frequency in Patients.

Mol Ther Methods Clin Dev. 2020-2-20

[9]
A Microfluidic Device to Enhance Viral Transduction Efficiency During Manufacture of Engineered Cellular Therapies.

Sci Rep. 2019-10-22

[10]
Clinical use of lentiviral vectors.

Leukemia. 2018-3-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索